Answer:
The wedge cut from the first octant ⟹ z ≥ 0 and y ≥ 0 ⟹ 12−3y^2 ≥ 0 ⟹ 0 ≤ y ≤ 2
0 ≤ y ≤ 2 and x = 2-y ⟹ 0 ≤ x ≤ 2
V = ∫∫∫ dzdydx
dz has changed from zero to 12−3y^2
dy has changed from zero to 2-x
dx has changed from zero to 2
V = ∫∫∫ dzdydx = ∫∫ (12−3y^2) dydx = ∫ 12(2-x)-(2-x)^3 dx =
24(2)-6(2)^2+(2-2)^4/4 -(2-0)^4/4 = 20
Step-by-step explanation:
Answer:d
Step-by-step explanation:
Answer: IX - 4I ≤ 4
Step-by-step explanation:
In the numer line we can see that our possible values of x are in the range:
0 ≤ x ≤ 8
And we want to find an absolute value equation such that this set is the set of possible solutions.
An example can be:
IX - 4I ≤ 4
To construct this, we first find the midpoint M of our set, in this case is 4.
Then we write:
Ix - MI ≤ IMI
Notice that i am using the minor and equal sign, this is because the black dots means that the values x = 0 and x = 8 are included, if the dots were empty dots, it would be an open set and we should use the < > signs.
Given the equation 4(3b + 2)² = 64,
dividing both sides of the equation by 4, we have
(3b + 2)² = 16 and getting the square root of both sides,
(3b + 2) = 4 and (3b + 2) = -4
We can solve for b for each equation and have
3b = 2 | 3b = -6
b = 2/3 | b = -2
Therefore, the values of b are 2/3 and -2 and from the choices, the answer is <span>A: b = 2/3 and b = -2.</span>