Answer:
Option D is correct.
Step-by-step explanation
Principal = $9250
rate of interest = 7% or 0.07
time = 5 years or 260 weeks
[ Since there are 52 weeks in a year . for 5 years it will be 5x52=260 weeks]
Applying the formula
Amount after t years = 
where P = principal
r = rate % in decimals
n= number of times in a year
t = times ( in years)
plugging the values in the formula
Amount = 
= 
= 
= 9250(1.418733588)
=$13123.29
Answer:
The anwerss to the question are
(A) P(No less than two people use their phones while driving) = 0.1225
(B) P(The probability that no more than one person of the three people use their cell phone while driving) = 0.147875
Step-by-step explanation:
The given relations are
Percentage of motorists that routinely drive while sing their phone = 35 %
The probaboloty that if a peerson is random;ty selected from a group of hudred person routinely uses their phone wjile friving P(phone) = 35
The probability that a motorist randomly selected fron a set of 100 do not routinely use thir phones while driving = P(No celll phone) = 65
Then the probability that when three people are selected at random at least two people of the three people use their cell phone while driving is
P(phone) = 35/100m = 0.35
P(No celll phone) = 65/100 = 0.65
(A) Probability of at least two of three use their phones whle driving is
0.35×0.35×0.65 +0.35×0.35×0.35 = 0.1225
(B) The probability of only one person out of three seted use their phones while driving is
(0.35)(0.65)(0.65) = 0.147875
In addition, from the response shown, using a graphical calculator brings the following benefits:
1) You can write the system of linear equations as big as you want. This is: systems 3 * 3, 4 * 4, 5 * 5.
2) The response to systems of equations greater than 2 * 2 can be complicated when you graph the solution, therefore, the graphing calculator can be much more efficient in these cases.
3) You can write the linear equations in any way. Resolving by hand you should probably rewrite the system of equations to find the solution.
3x23=69 is the equation that has the sum 69