Answer:
90.9 seconds
Explanation:
m = Mass of liquid = Volume×Density
c = Specific heat
= Change in temperature
t = Time taken
Room temperature = 75 °F
Converting to Celsius

Heat required to raise the temperature of water

Power

Efficiency of the plate

Heat required to raise the temperature of water


Time taken to heat the aceton is 90.9 seconds
Answer:
0.22m/s
Explanation:
The total momentum of the System is conserved. Total momentum of the system before the collision is equal to the total momentum of the system after collision. The total momentum is the sum of individual momentum of all the objects in that system.
momentum of an object = mass* velocity
Total Momentum before collision = 0.2*0.3 + 0.1*0.1= 0.07 kg⋅m/s;
Total momentum after collision = 0.1*0.26 + 0.2*x = 0.07;
Solve for x.
1). <u>Power = (voltage)² / (Resistance)</u>
4,500 = (220)² / Resistance
Multiply each side by (resistance) : 4,500 x resistance = (220)²
Divide each side by 4,500 : Resistance = (220)² / 4,500 = <em>10.76 ohms</em>
2). <u>Power = (voltage) x (Current)</u>
Divide each side by (voltage): Power / voltage = Current
4,500 / 220 = <em>20.45 Amperes</em>
3). 4,500 watts = 4.5 kilowatts
(4.5 kilowatts) x (4 hours) = <em>18 kilowatt-hours</em>
Answer:
Explanation:
Mutual inductance is equal to magnetic flux induced in the secondary coli due to unit current in the primary coil .
magnetic field in a torroid B = μ₀ n I , n is number of turns per unit length and I is current .
B = 4π x 10⁻⁷ x (1000 / 2π x .16 )x 1 ( current = 1 A)
flux in the secondary coil
= B x area of face of coil x no of turns of secondary
= 4π x 10⁻⁷ x (1000 /2π x .16 ) .25 x 10⁻⁴ x 750
= 2 x 1000 x .25 x( 750 /.16) x 10⁻¹¹
2343.75 x 10⁻⁸
= 23.43 x 0⁻⁶ H.
.