Given the distance r = 2/1000 m, the force between them F =
0.0104 N, the mass of the two object can be calculated using formula:
F = G(m1m2)/r^2 since the mass are equal F = G (m^2)/r^2
And where G = is the gravitational constant (6.67E-11 m3 s-2
kg-1)
The mass of the two objects are 24.96 kg
b) Equal to 243 N.
Explanation:
The total force acting on the car in the opposite direction including the road friction and air resistance is equal to 243 N.
This is in conformity with newton's third law of motion.
Newton's third law of motion states that "action and reaction are equal and opposite in direction. "
- The action force is that of the pull by Harry acting on the car.
- The reaction force is in the opposite direction.
- Both action and reaction force equal and opposite and magnitude and direction
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer:4.05 s
Explanation:
Given
First stone is drop from cliff and second stone is thrown with a speed of 52.92 m/s after 2.7 s
Both hit the ground at the same time
Let h be the height of cliff and it reaches after time t

For second stone
---2
Equating 1 &2 we get





Answer:
4 (please see the attached file)
Explanation:
While the angular speed (counterclockwise) remained constant, the angular acceleration was just zero.
So, the only force acting on the bug (parallel to the surface) was the centripetal force, producing a centripetal acceleration directed towards the center of the disk.
When the turntable started to spin faster and faster, this caused a change in the angular speed, represented by the appearance of an angular acceleration α.
This acceleration is related with the tangential acceleration, by this expression:
at = α*r
This acceleration, tangent to the disk (aiming in the same direction of the movement, which is counterclockwise, as showed in the pictures) adds vectorially with the centripetal force, giving a resultant like the one showed in the sketch Nº 4.
answer;
The hole in the center of the washer will expand
explanation;
<em>A flat metal washer is heated. As the washer's temperature increases, what happens to the hole in the center? A flat metal washer is heated. As the washer's temperature increases, what happens to the hole in the center? The hole in the center will remain the same size. Changes in the hole cannot be determined without know the composition of the metal. The hole in the center of the washer will expand. The hole in the center of the washer will contract.</em>
this is an example of area expansivity.
coefficient of area expansivity is change in area per area per degree rise in temperature
a=dA/(A*dt)
as the temperature rises , there will be volumetric and area expansivity on the body. volume also increases because of the intermolecular forces of attraction between the molecule is now getting apart.