Answer:
East of North
Explanation:
We have the following data:
Speed of the wind from East to West: 
Speed of the bee relative to the air: 
If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).
Now, we need to find the direction the bee should fly directly to the flower (due North):


Clearing
:


Answer:
h = 20.36[m]
Explanation:
To solve this problem we must calculate the perimeter (length of a circumference) of the circumference, which is denoted by the following equation:
L = 2*π*r
where:
r = radius = 0.9[m]
π = 3.1416
L = 2*(3.1416)*(0.9)
L = 5.654[m]
Now we know that the pulley or circumference had to rotate 3.6 times to get the water out of the well. In this way the depth of the well can be calculated by means of the following equation:
h = 3.6*L
h = 3.6*5.654
h = 20.36[m]
Answer: k= 
Explanation:
Recall that the formula for kinetic energy is given below as
k = 
where k=kinetic energy (joules), m= mass of object (kg), v= velocity of object m/s)
For cart A
= mass of cart A
= v = velocity of cart A
= kinetic energy of cart A
hence,
= 
For cart B
= mass of cart B
= 2v = velocity of cart B
= kinetic energy of cart B
hence,
=
= 2
from the question, both cart are identical which implies they have the same mass i.e
=
= m which implies that
and 
The total kinetic energy K is the sum of cart A and cart B kinetic energy


hence

Answer:The higher up an object is the greater its gravitational potential energy. The larger the distance something falls through the greater the amount of GPE the object loses as it falls. As most of this GPE gets changed into kinetic energy, the higher up the object starts from the faster it will be falling when it hits the ground. So a change in gravitational potential energy depends on the height an object moves through.
Explanation: Lifting an apple up 1 metre is easier work than lifting an apple tree the same height. This is because a tree has more mass, so it needs to be given more gravitational potential energy to reach the same height.
Answer:
rod end A is strongly attracted towards the balls
rod end B is weakly repelled by the ball as it is at a greater distance
Explanation:
When the ball with a negative charge approaches the A end of the neutral bar, the charge of the same sign will repel and as they move they move to the left end, leaving the rod with a positive charge at the A end and a negative charge of equal value at end B.
Therefore rod end A is strongly attracted towards the balls and
rod end B is weakly repelled by the ball as it is at a greater distance