Answer:
a) 
b) Wind capacity will pass 600 gigawatts during the year 2018
Step-by-step explanation:
The world wind energy generating capacity can be modeled by the following function

In which W(t) is the wind energy generating capacity in t years after 2014, W(0) is the capacity in 2014 and r is the growth rate, as a decimal.
371 gigawatts by the end of 2014 and has been increasing at a continuous rate of approximately 16.8%.
This means that

(a) Give a formula for W , in gigawatts, as a function of time, t , in years since the end of 2014 . W= gigawatts



(b) When is wind capacity predicted to pass 600 gigawatts? Wind capacity will pass 600 gigawatts during the year?
This is t years after the end of 2014, in which t found when W(t) = 600. So




We have that:

So we apply log to both sides of the equality





It will happen 3.1 years after the end of 2014, so during the year of 2018.
Answer, step-by-step explanation:
A. With the previous exercise we can deduce that there is the situation of a number of sales in a grocery store, the relative frequency for the number of units sold, is shown below:
units sold. relative frequency. Acumulative frequency. interval of random numbers
30. 0.16. 0.16. 0.00 <0.16
40. 0.24. 0.4. 0.16 <0.4
50. 0.3. 0.7. 0.4 <0.7
60. 0.2. 0.9. 0.7<09
70. 0.1. 1. 0.9<1
B. For the next point, they give us some random numbers and then it is compared with the simulation of 10 days in sales:
random Units
number. sold
0.12. 30
0.96. 70
0.53. 50
0.80. 60
0.95. 70
0.10. 30
0.40. 50
0.45. 50
0.77. 60
0.29. 40
the two lists are compared so that opposite each one is the result of the simulation
Area=height times base (for some prisms including cylinders)
vcylinder=hpir²
h=height
therefor pir²=base area
vcylinder=height times aeraofbase
given
h=9
v=324pi
324pi=9(basearea)
divide both sides by 9
36pi=areabase
the area of te base is 36pi square cm (put 36 in the blank since th pi is alredy there)