Answer:
0.0003W/cm°C
Step-by-step explanation:
The question is not properly written. Here is the correct question.
The batting wang xiu ying uses to fill quilts has a thermal conductivity rate of 0.03 watts (W) per meter(m) per degree celsius. what is the batting thermal conductivity when w/cm•c
Given the thermal conductivity in W/m°C to be 0.03W/m°C
We are to rewrite the value in W/cm°C
The difference is the unit. The only thing we need to do is to simply convert the unit (metres) in W/m°C to centimeters (cm)
Since 100cm = 1m, 0.03W/m°C can be expressed as shown below;
= 0.03W/m°C
= 0.03 × W/1m×°C
Note that 1m = 100cm, substituting this conversion into the expression, it will become;
= 0.03 × W/100cm × °C
= 0.03/100 × W/cm°C
= 0.0003W/cm°C
Hence the battling thermal conductivity in W/cm°C is 0.0003W/cm°C
Are you looking for the area or the perimeter?
Perimeter: 24
Area: 32
Hope this helped!
-TTL
Maximum weight the bridge can support in kilograms is 101696
Step-by-step explanation:
- Step 1: Given capacity of bridge = 100 British tons. Find how many kilograms are equivalent to 1 British ton.
1 British ton = 2240 pounds
1 pound = 0.454 kg
⇒ 1 British ton = 2240 × 0.454 kg = 1016.96 kg
- Step 2: Find how many kilograms are in 100 British tons.
⇒ 100 × 1016.96 = 101696
Answer:

And when we apply the limit we got that:

Step-by-step explanation:
Assuming this complete problem: "The following formula for the sum of the cubes of the first n integers is proved in Appendix E. Use it to evaluate the limit . 1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2"
We have the following formula in order to find the sum of cubes:

We can express this formula like this:
![\lim_{n\to\infty} \sum_{n=1}^{\infty}i^3 =\lim_{n\to\infty} [\frac{n(n+1)}{2}]^2](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Di%5E3%20%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%5E2)
And using this property we need to proof that: 1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2
![\lim_{n\to\infty} [\frac{n(n+1)}{2}]^2](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%5E2)
If we operate and we take out the 1/4 as a factor we got this:

We can cancel
and we got

We can reorder the terms like this:

We can do some algebra and we got:

We can solve the square and we got:

And when we apply the limit we got that:
