Solute potential of a solution is calculated using the formula,
Ψ
Where,
Ψ
is the solute potential of the solution,
<em>i</em> is the degree to which the solute ionizes(ionization constant) in solution = 1, as sucrose is a nonelectrolyte.
C is the concentration of the solution in molarity = 0.5 M
R is the gas constant or the pressure constant = 0.0831 L.bar/(mol.K)
T is the temperature in Kelvin scale = 
Calculating the solute potential of the surrounding sucrose solution:
Ψ
= -(1 * 0.5 M * (0.0831 L.bar/(mol.K))* 303 K)
= 12.6 bar
Therefore, the solute potential of the surrounding solution is 12.6 bar
10% of energy is lost (to heat), for each level of the food chain. So the rabbit would have 500, the snake would have 50 and the hawk would have 5.
Answer:
D
Explanation:
A group that works together will get more done. This applies to not only humans, but animals as well.
The amount of total energy at each trophic level decreases as it moves through, so 90% is lost at each level. This means that only 10 percent of the energy at any trophic level is transferred to the next level; and the rest is lost as heat.
In this case, if a plant ecosystem has 3000000 kilocalories (kcal) of energy, about 300000 kcal will be transferred to primary consumers (for example grass hoppers). If the red-tailed hawks are tertiary consumers, they will get 3000 kcal of energy.