Answer:
36
Step-by-step explanation:
36 is greater than 3.6
Juice bottles are J, replace j with 6 in the equation and solve for w:
3w + 4(6) = 39
3w + 24 =39
Subtract 24 from both sides:
3w = 15
Divide both sides by 3:
w = 15/3
w = 5
You can buy 5 water bottles.
Answer:
Part A: From 0 to 2 seconds, the height of the water balloon increases from 60 to 75 feet, therefore the water balloon's height is increasing during the interval [0,2]
Part B: From 2 to 4 seconds, the height of the water balloon stays the same at 75 feet, therefore the water balloon's height is the same during the interval [2,4] From 10 to 12 seconds, the height of the water balloon stays the same at 0 feet, therefore the water balloon's height is the same during the interval [10,12] From 12 to 14 seconds, the height of the water balloon stays the same at 0 feet, therefore the water balloon's height is the same during the interval [12,14]
Part C: The interval, [4,6] of the domain is when the water ballon's height decreases the fastest. The interval [4,6] decreases by 35 feet. The two other intervals that decrease are [6,8] and [8,10] which both have the same slope. They decrease by 20 feet. Therefore, this helps us conclude that the interval [4,6] decreases the fastest because 35 feet is a more significant decrease than 20 feet.
Part D: I predict that the height of the water balloon at 16 seconds is 0 feet. This is because at 10-14 seconds, the water balloon's height is 0 feet. In read-world situations, if the water balloon is on the ground which is 0 feet, it stays on the ground due to gravity.
Step-by-step explanation:
I hope this helps! I also do not know if it is all correct but I did research and everything so hopefully it is correct! Good luck!
We know that
Half-life is modeled by the formula
An=A0*(0.5)<span>^[t/h)]
where
An----------> </span>is the amount remaining after a time t
A0----------> is the initial quantity
t------------> is the time
h------------> is the half-life of the decaying quantity
in this problem
h=1601 years
A0=50 g
An=?
t=100 years
An=A0*(0.5)^[t/h)]---------> An=50*(0.5)^[100/1601)]-----> 47.88 gr
the answer is 47.88 g