Let x be rate of boat in still water
let y be rate of current
we use this equation to relate quantities:
distance = speed · time
we have two unknowns so we might need to create a system of equationss
upstream:
speed (in km/h) = x - y
(we get speed of boat then subtract the current's speed from it since current is going against boat direction)
time = 3 hours
distance = 144 km
downstream:
speed (in hm/h) = x + y
(we get speed of boat then add the current's spd from it since current is going against boat direction)
time = 2 hours
distance = 144 km (same distance upstream and downstream)
using distance = speed times time
for upstream
144 = 3(x-y)
144 = 3x - 3y
for downstream
144 = 2(x+y)
72 = x + y
system of eqns:
144 = 3x - 3y
72 = x + y
solve by substitution: move 72 = x + y into x = 72 - y and subst into other equation for x
144 = 3(72 - y) - 3y
144 = 216 - 3y - 3y
144 = 216 - 6y
144 - 216 = -6y
-72 = -6y
y = 12 km/h
Use x = 72 - y to find x with y = 12: x = 72 - 12 = 60 km/h
rate of boat in still water is 60 km/h
rate of the current is 12 km/h
case 1,
Let the CP be ₹x,
SP = ₹2400
Profit = SP – CP
= 2400 – x
Profit % = {(2400–x)/ x} × 100%
According to the question,
{(2400–x)/ x} × 100 = 25
=> (2400–x)/ x= 25 /100
=> 100(2400–x) = 25x [ cross multiplication]
=> 240000 – 100x = 25x
=> 240000 = 25x + 100x
=> 240000 = 125x
=> 240000/125 = x
=> x = 1920
So, CP = ₹1920
case 2,
SP = ₹2040
Profit = SP – CP
= 2040 – 1920
= ₹120
profit % = 120/1920 × 100%
= 16%
<h3>Thus, his profit would be 16% if he had sold his goods for ₹2040.</h3>
Answer:
Translate K to N and rotate about K until HK lies on the line containing LN.
Step-by-step explanation:
Hope this helps bb's!!
Lots of love and peace your way!! <3
Its not possible because if you try to multiply back and forth it wont work.
Angle AOD = 180
4x-2 + 5x+10 + 2x+14 = 180
11x + 22 = 180
11x = 180 - 22 = 158
x = 158/11