To solve this problem, we need to know that
arc length = r θ where θ is the central angle in radians.
We're given
r = 6 (units)
length of minor arc AB = 4pi
so we need to calculate the central angle, θ
Rearrange equation at the beginning,
θ = (arc length) / r = 4pi / 6 = 2pi /3
Answer: the central angle is 2pi/3 radians, or (2pi/3)*(180/pi) degrees = 120 degrees
The answer is the first choice - see picture for solution:
Given:
square with sides measuring 7 cm.
3 triangles attached to three sides of the square. A line bisecting one triangle is measured at 4 cm.
Area of a square = s² = (7cm)² = 49 cm²
Area of a triangle = hb/2 = (4cm*7cm)/2 = 14 cm²
Area of the 3 triangles = 14 cm² x 3 = 42 cm²
Total area of the logo = 49 cm² + 42 cm² = 91 cm²
<em>Answer:</em>
<em>21, 75 m</em>
<em>Step-by-step explanation:</em>
<em>The actual length ?</em>
<em>14, 5 cm × 150 = 2 175 cm = 21, 75 m</em>
<em />