Answer:
There were (4x + 2) grapes in the bowl
Step-by-step explanation:
Here, we are interested in calculating the total number of grapes in the bowl.
We have 3 people sharing the total
Damien are x grapes
Jake ate 1 more than twice what Damien and that is (1 + 2x) grapes
Makayla ate 5 fewer grapes than Damien: So what Makayla ate is (x-5) grapes
And now, we have 6 grapes left.
To find the total number of grapes in the bowl, we need to add up all what they ate plus what is left.
Mathematically, that would be;
x + 1 + 2x + x -5 + 6
= 4x + 2
Answer: The proportion of students spending at least 2 hours on social media equals 0.7257 .
Step-by-step explanation:
Given : The typical college freshman spends an average of μ=150 minutes per day, with a standard deviation of σ=50 minutes, on social media.
The distribution of time on social media is known to be Normal.
Let x be the number of minutes spent on social media.
Then, the probability that students spending at least 2 hours (2 hours = 120 minutes as 1 hour = 60 minutes) on social media would be:

Hence, the proportion of students spending at least 2 hours on social media equals 0.7257 .
The volume of a sphere is given by:

So, we need to deduct this equation. We will walk through Calculus on the concept of a solid of revolution that is a solid figure that is obtained by rotating a plane curve around some straight line (the axis of revolution<span>) that lies on the same plane. We know from calculus that:
</span>
![V=\pi \int_{a}^{b}[f(x)]^{2}dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5Bf%28x%29%5D%5E%7B2%7Ddx)
<span>
Then, according to the concept of solid of revolution we are going to rotate a circumference shown in the figure, then:
</span>

<span>
Isolationg y:
</span>

<span>
So,
</span>

<span>
</span>
![V=\pi \int_{a}^{b}[\sqrt{r^{2}-x^{2}}]^{2}dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5B%5Csqrt%7Br%5E%7B2%7D-x%5E%7B2%7D%7D%5D%5E%7B2%7Ddx)
<span>
</span>

<span>
being -r and r the limits of this integral.
</span>

<span>
Solving:
</span>
![V=\pi[r^{2}x-\frac{x^{3}}{3}]\right|_{-r}^{r}](https://tex.z-dn.net/?f=V%3D%5Cpi%5Br%5E%7B2%7Dx-%5Cfrac%7Bx%5E%7B3%7D%7D%7B3%7D%5D%5Cright%7C_%7B-r%7D%5E%7Br%7D)
Finally:
<span>
</span>

<span>
</span><span>
</span>
You will move 1/3 of the circumference of the circle with a radius of 3m.
C=2πr so C/3 is:
d=2πr/3, we are told that the radius is 3m so:
d=2π3/3
d=2π m
d≈6.28 m (to nearest hundredth of a meter)