Answer: D. n + q = 20
5n + 25q = 300
Step-by-step explanation:
Let n represent the number of nickels that you have.
Let q represent the number of quarters that you have.
Suppose you have 20 coins. It means that
n + q = 20
The total value of the coins is $3. The value of a quarter is $0.25 and the value if a nickel is $0.05. Therefore, the equation would be
0.05n + 0.25q = 3
Multiplying both sides of the equation by 100, it becomes
5n + 25q = 300
The correct option is
D. n + q = 20
5n + 25q = 300
Hiii
all you do is subtract...
534-476=58
58 spots are left.
12h + 30w.....where h = hrs worked and w = wagons sold
so if an employee works 6 hrs and sells 3 wagons....then h = 6 and w = 3
12h + 30w
12(6) + 30(3) =
72 + 90 = $ 162 <==
Answer:
Step-by-step explanation:
We are given that

Function f decreases from quadrant 2 to quadrant 1 and approaches y=0
It cut the y- axis at (0,6) and passing through the point (1,2).
Function g(x) approaches y=0 in quadrant 2 and increases into quadrant 1.
It passing through the point (-1,2) and cut the y-axis at point (0,6).
Reflection across y- axis:
Rule of transformation is given by

Using the rule then we get

By using

Substitute x=-1

Substitute x=0

Therefore,
is true.
Answer:
The value of q that maximize the profit is q=200 units
Step-by-step explanation:
we know that
The profit is equal to the revenue minus the cost
we have
---> the revenue
---> the cost
The profit P(q) is equal to

substitute the given values



This is a vertical parabola open downward (because the leading coefficient is negative)
The vertex represent a maximum
The x-coordinate of the vertex represent the value of q that maximize the profit
The y-coordinate of the vertex represent the maximum profit
using a graphing tool
Graph the quadratic equation
The vertex is the point (200,-120)
see the attached figure
therefore
The value of q that maximize the profit is q=200 units