Answer:
a) xf = 5.1 m
b) u = 0.304
c) x = 10.3 m
Explanation:
we will use the following formula:
u = 0.1 + A*x
Si x = 12.5 m, u = 0.6
Clearing A:
A = 0.5/12.5 = 0.04 m^-1
a) we have to:
W = Ekf - Eki
where Ekf = final kinetic energy
Eki = initial kinetic energy
9.8*(0.1xf + ((0.04*xf^2)/(2))) = (4.5^2)/(2)
Clearing xf, we have:
xf = 5.1 m
b) Replacing values for u:
u = 0.1 + (0.04*5.1) = 0.304
c) Wf = Ekf - Eki
-u*m*x*g = 0 - (m*v^2)/2
Clearing x:
x = v^2/(2*u*g) = (4.5^2)/(2*0.1*9.8) = 10.3 m
Answer:

Explanation:
Let m be the mass of a little car and m' be the mass of another car.
We know that,
Force = mass × acceleration
ATQ,
m × a = 2m × a'
a = 2 × a'

So, the acceleration of another little car is equal to
.
Answer:
the ice cube melted due to the absorption of heat from the surrounding of the ice, the has a heat capacity of zero so it turns it from its solid state to its liquid state which leads to the formation of the puddle
Answer:
Explanation:
Given
Two block are connected by rope 
rope is attached to block 2
suppose
is a force applied to Rope
Applied force
=Tension in Rope 2

where a=acceleration of system
Tension in rope
is denoted by 

divide 1 and 2 we get

also 



Answer:
1.10 m/s
Explanation:
Linear speed is given by
Kinetic energy is given by
Potential energy
PE= mgh
From the law of conservation of energy, KE=PE hence
where m is mass, I is moment of inertia,
is angular velocity, g is acceleration due to gravity and h is height
Substituting m2-m1 for m and 0.5l for h,
for
we obtain
and making v the subject
For the rod, moment of inertia
and for sphere
hence substituting 0.5L for R then
For the sphere on the left hand side, moment of inertia I
while for the sphere on right hand side,
The total moment of inertia is therefore given by adding
Substituting
for I in the equation
Then we obtain
This is the expression of linear speed. Substituting values given we get