Answer:
0.95
Step-by-step explanation:
The computation of the probability that a customer neither buys beer nor buys cigars is given below;
Given that, the probabilities are
The customers who purchased cigars be 0.02
The customers who purchased cigars + beer 0.50
And, the customers who purchased beer + cigars be 0.25
Now the probabilities where the customer purchased both
= 0.05 × 0.02
= 0.10
The probability where the customer purchased beer is
= 0.01 ÷ 0.25
= 0.04
Now the probability where a customer neither buys beer nor buys cigars is
= 1 - 0.02 + 0.04 - 0.01
= 0.95
Answer:
Question 13: For age groups y=1 and y=1.3 response is 8 microseconds.
Question 14: The club was making a loss between 11.28 and 4.88 years.
Step-by-step explanation:
Question 13:
The age group y for which the response rate R is 8 microseconds is given by the solution of the equation

We graph this equation and find the solutions to be

Since only positive solutions for y are valid in the real world we take only those.
Thus only for age groups y=1 and y=1.3 the response is 8 microseconds.
Question 14:
The footbal club is making a loss when 
Or

We graph this inequality and find the solutions to be
and 
Since in the real world only positive values for t are valid, we take the the second solution to be true.
Thus the club was making a loss in years 
Let events
A=Nathan has allergy
~A=Nathan does not have allergy
T=Nathan tests positive
~T=Nathan does not test positive
We are given
P(A)=0.75 [ probability that Nathan is allergic ]
P(T|A)=0.98 [probability of testing positive given Nathan is allergic to Penicillin]
We want to calculate probability that Nathan is allergic AND tests positive
P(T n A)
From definition of conditional probability,
P(T|A)=P(T n A)/P(A)
substitute known values,
0.98 = P(T n A) / 0.75
solving for P(T n A)
P(T n A) = 0.75*0.98 = 0.735
Hope this helps!!
A) Plan A requires for a percentage increase of a number of students. This means that year after year the number of new students will increase. Plan B requires for a constant number of new students each year. This means that year after year the percentage increase would get smaller.
B) To solve this problem we will use formula for a growth of population:

Where:
final = final number of students
initial = initial number of students
percentage = requested percentage increase
t = number of years
We can insert numbers and solve for t:

For Plan B we can use simple formula
increase = 120
increase per year = 20
number of years = increase / (increase per year) = 120 / 20 = 6 years
Plan B is better to double the <span>enrollment.
C)We use same steps as in B) to solve this.
</span>

For Plan B we can use simple formula
increase = 240
increase per year = 20
number of years = increase / (increase per year) = 240 / 20 = 12 years
Plan A is better to triple the enrollment.
Answer:
He burnt 1000 calories per hour when playing basketball.
Step-by-step explanation:
Let B be calories burned playing basketball, and C calories burned canoing.
1800 = B + 2C
3200 = 2B + 3C
From 1st equatipn, we get that B = 1800 - 2C
Replacing into the 2nd equation, we have:
3200 = 2(1800-2C) + 3C
3200 = 3600 - 4C + 3C
3200 = 3600 - 1C
C = 3600 - 3200
C = 400
Knowing C, we find B.
B = 1800 - 2C = 1800 - 2*400 = 1800 - 800 = 1000 calories.