Answer:
A: 6x⁸y⁵
B: 4x⁵z⁸
C: 48a¹²b⁵
D: 6s⁹t³
Step-by-step explanation:
When you multiply 2 exponents together, you add them. When you power an exponent, you multiply the 2 exponents together,
3x²2y⁴(2x⁶y)
6x⁸y⁵
xz³(4x⁴z⁵)
4x⁵z⁸
(4a³)²(3a⁶b⁵)
16a⁶(3a⁶b⁵)
48a¹²b⁵
6s⁵t(s⁴t²)
6s⁹t³
1 file + 3 pens = $32.85 --------------- (1)
2 files + 8 pens = $83.50 ----------------(2)
(1) x 2 :
2 files + 6 pens = $65.70 ----------------(1a)
(2) - (1a) :
2 pens = $17.80
1 pen = $8.90
-------------------------------------------------------------------------------
Answer: One pen costs $8.90.
-------------------------------------------------------------------------------
If point is the interior of <AOC ,
then m<AOB + m<BOC = m< AOC ( angle addition postulate ) eq 1
(3m<BOC ) + m <BOC = m <AOC { m<AOB = 3m<BOC)
4m <BOC = 108
m<BOC = 27
m<AOB + m <BOC = m < AOC
m<AOB = 108 - 27
m <AOB = 81
Answer:
=(k−1)*P(X>k−1) or (k−1)365k(365k−1)(k−1)!
Step-by-step explanation:
First of all, we need to find PMF
Let X = k represent the case in which there is no birthday match within (k-1) people
However, there is a birthday match when kth person arrives
Hence, there is 365^k possibilities in birthday arrangements
Supposing (k-1) dates are placed on specific days in a year
Pick one of k-1 of them & make it the date of the kth person that arrives, then:
The CDF is P(X≤k)=(1−(365k)k)/!365k, so the can obtain the PMF by
P(X=k) =P (X≤k) − P(X≤k−1)=(1−(365k)k!/365^k)−(1−(365k−1)(k−1)!/365^(k−1))=
(k−1)/365^k * (365k−1) * (k−1)!
=(k−1)*(1−P(X≤k−1))
=(k−1)*P(X>k−1)