The number of people who are carriers (heterozygous) for PKU if there are 33 of the 300,000 people in Corpus Christi, TX, have PKU is 15. Heterozygous or also called as zygosity refers to having the unlike genes or different genes.
. excess water on<span> the </span>slides will<span> boil </span>during fixation<span>. Why should </span>you<span> be careful . </span>During<span> the</span>performance<span> of the </span>simple staining procedure<span>, </span>you failed<span> to </span>heat fix your E<span>. </span>coli smear preparation.Upon microscopic examination<span>, how </span>would you expect<span> this </span>slide<span> to </span>differ<span> from the </span>correctly prepared slides<span>? When </span>heat fixing<span> the.</span>
They would have to use micro dissection instruments
Answer:
This is the remaining incomplete part of the question.
Requires separation of template strand Uses helicase Occurs during interphase of cell cycle Require primers Occurs in nucleus Requires dNTPs Produces Okazaki fragments Requires DNA polymerase Requires Primase Requires Taq DNA polymerase Requires cycles of heating Occurs in cytoplasm Occurs during anaphase of mitosis
Explanation:
Cellular DNA replication Polymerase chain reaction
Requires separation of template Requires separation of template
strand strand
Requires dNTPs Requires dNTPs
Uses helicase Requires cycles of heating
Requires Primase Require primers
Requires DNA polymerase Requires Taq DNA polymerase
Occurs during interphase of cell cycle
Occurs in nucleus Occurs in test tube
Produces Okazaki fragments
Answer:
a) The response indicates that a pH below or above this range will most likely cause enolase to denature/change its shape and be less efficient or unable to catalyze the reaction.
b)The response indicates that the appropriate negative control is to measure the reaction rate (at the varying substrate concentrations) without any enzyme present.
c)The response indicated that the enolase has a more stable/functional/correct/normal protein structure at the higher temperature of 55°C than at 37°C because the enzyme is from an organism that is adapted to growth at 55°C.
Explanation:
Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during both glycolysis and gluconeogenesis.In bacteria, enolases are highly conserved enzymes and commonly exist as homodimers.
The temperature optimum for enolase catalysis was 80°C, close to the measured thermal stability of the protein which was determined to be 75°C, while the pH optimum for enzyme activity was 6.5. The specific activities of purified enolase determined at 25 and 80°C were 147 and 300 U mg−1 of protein, respectively. Km values for the 2-phosphoglycerate/phosphoenolpyruvate reaction determined at 25 and 80°C were 0.16 and 0.03 mM, respectively. The Km values for Mg2+ binding at these temperatures were 2.5 and 1.9 mM, respectively.
Enolase-1 from Chloroflexus aurantiacus (EnoCa), a thermophilic green non-sulfur bacterium that grows photosynthetically under anaerobic conditions. The biochemical and structural properties of enolase from C. aurantiacus are consistent with this being thermally adapted.