We are given with a triangle and three medians. The intersection of the two medians is also given which is (4,5). What is asked is the intersection between another pair of medians. Since the medians of a triangle intersect at the centroid of a triangle, the intersection is also
<span>B. (4, 5)</span>
Let
X-----------------> number of pansies
y-----------------> number of trees
we know that
x=15*8----------> x=120 pansies
y=8 trees
cost of each trees is----------> $<span>20.75
</span>cost of each pansies is------> $2.50/6------> $5/12
[<span>expression to find Katherine’s final cost]=[cost trees]+[cost pansies]
</span>[cost trees]=y*$20.75
[cost pansies]=x*($5/12)
[expression to find Katherine’s final cost]=y*($20.75)+x*($5/12)
[expression to find Katherine’s final cost]=8*($20.75)+120*($5/12)
[expression to find Katherine’s final cost]=$166+$50
[expression to find Katherine’s final cost]=$216
the answer is
[expression to find Katherine’s final cost]=y*($20.75)+x*($5/12)
[expression to find Katherine’s final cost]=8*($20.75)+120*($5/12)
Katherine’s final cost is $216
If a random sample of 20 persons weighed 3,460, the sample mean x-bar would be 3460/20 = 173 pounds.
The z-score for 173 pounds is given by:

Referring to a standard normal distribution table, and using z = 0.66, we find:

Therefore

The answer is: 0.2546