I think that since it lives on the ocean floor, at the deepest of the ocean. So anyway, the fin on the Eurypterids is still necessary but not that much, since they live on the ocean floor. Their movements mostly on the ocean floor. So fin would not help them "stick" to the floor. Also there are still gravity acts on the Eurypterids and the feet would help them move faster. Hope this helps.
Answer:
First question - Green curve
Second question - Red curve
Explanation:
Answer:
Glucose utilization would increase a lot.
Explanation:
Aerobic condition indicates the presence of large amount of oxygen in the body. Anaerobic condition means that the oxygen is limited or deficient in the body.
The muscle cells shows anaerobic condition during exercise and produces lactic acid. Since, the ATP demand is same in both the aerobic and anaerobic conditions. This increases the demand of glucose in the body. Glucose utilization is increased to provide proper energy to the individual.
Thus, the correct answer is option (a).
This is the DNA. I'm going to only use the upper strand to demonstrate what this strand would code for before and after a single bp deletion (so write it as mRNA). I will also write it how it's easier to see this which is to split them up into the 3 base codon system. Note that you don't need to know the amino acid code - you use a table to find these.
ORIGINAL (mRNA on top, Amino Acid (AA) on bottom:
5'-AGC GGG AUG AGC GCA UGU GGC GCA UAA CUG-3'
SER GLY MET SER ALA CYS GLY ALA STOP LEU
Note that the protein would stop being made at the stop codon and the LEU wouldn't matter at the end...
Now, I will remove one bp...(I bolded it up top). Rewrite the mRNA and find the corresponding AA...
NEW
5'-AGC GGG AUG GCG CAU GTG GCG CAU AAC UG-3'
SER GLY MET ALA HIS VAL ALA HIS ASN .....
Completely different amino acid sequence after the methionine (MET). The stop codon is gone...the protein would continue being translated until it reaches another stop codon...so not what was supposed to be made!
Go to quizlet.com they give you all types of information