Median is defined as the middle term when the scores are arranged in increasing/decreasing order.
Joaquin's scores: 58, 62, 72, 75, 85, 91 Median: 73.5
Trisha's scores: 55, 74, 76, 90, 91, 92 Median: 83
The answer is letter A.
<u>Complete Question</u>
The circle is inscribed in triangle PRT. A circle is inscribed in triangle P R T. Points Q, S, and U of the circle are on the sides of the triangle. Point Q is on side P R, point S is on side R T, and point U is on side P T. The length of R S is 5, the length of P U is 8, and the length of U T is 6. Which statements about the figure are true?
Answer:
(B)TU ≅ TS
(D)The length of line segment PR is 13 units.
Step-by-step explanation:
The diagram of the question is drawn for more understanding,
The theorem applied to this problem is that of tangents. All tangents drawn to a circle from the same point are equal.
Therefore:
|PQ|=|PU|=8 Units
|ST|=|UT| =6 Units
|RS|=|RQ|=5 Units
(b)From the above, TU ≅ TS
(d)Line Segment |PR|=|PQ|+|QR|=8+5=`13 Units
That is around 13 or 14 cents. The specific answer is 13.65853659 cents, but you can either round up to 14 or round down to 13 (rounding up to 14 is the correct way to do it.)
First you divide 1.12 by 8.2 to get the unit rate because It takes $1.12 to buy 8.2 ounces. 1.12/8.2=13.65853659
Answer:
a). x = 11
b). m∠DMC = 39°
c). m∠MAD = 66°
d). m∠ADM = 36°
e). m∠ADC = 18°
Step-by-step explanation:
a). In the figure attached,
m∠AMC = 3x + 6
and m∠DMC = 6x - 49
Since "in-center" of a triangle is a points where the bisectors of internal angles meet.
Therefore, MC is the angle bisector of angle AMD.
and m∠AMC ≅ m∠DMC
3x + 6 = 8x - 49
8x - 3x = 49 + 6
5x = 55
x = 11
b). m∠DMC = 8x - 49
= (8 × 11) - 49
= 88 - 49
= 39°
c). m∠MAD = 2(m∠DAC)
= 2(30)°
= 60°
d). Since, m∠AMD + m∠ADM + m∠MAD = 180°
2(39)° + m∠ADM + 66° = 180°
78° + m∠ADM + 66° = 180°
m∠ADM = 180° - 144°
= 36°
e). m∠ADC = 
= 
= 18°
To find perimeter you add up all the sides so the answer is 210