The total revenue that is gained from the sales of the cakes is determined by multiplying the number of cakes by the price. If we let x be the number of $1 that should be deducted from the price and y be the total revenue,
y = (25 - x)(100 + 5x)
Simplifying,
y = 2500 + 25x - 5x²
We get the value of x that will give us the maximum revenue by differentiating the equation and equating the differential to zero.
dy/dx = 0 = 25 - 10x
The value of x is 2.5.
The price of the cake should be 25 - 2.5 = 22.5.
Thus, the price of the cake that will give the maximum potential revenue is $22.5.
Answer:
Yes, A KLP can be reflected across the line containing KP and then translated so that Pis mapped to M.
Step-by-step explanation:
The figure shows two congruent by HA theorem (they have congruent hypotenuses and a pair of congruent angles adjacent to the hypotenuses) triangles KLP and QNM.
A rigid transformation is a transformation which preserves lengths. Reflection, rotation and translation are rigit transformations.
If you reflect triangle KLP across the leg KP and translate it up so that point P coincides with point M , then the image of triangle KLP after these transformations will be triangle QNM.
Step-by-step explanation:
Difference per month = 28
=> January = February - 28 = 66-28 = 38
<u>ANSWER: </u>
In a data set with a range of 55.4 to 105.4 and 400 observations.86 lies in the 49th percentile.
<u>SOLUTION:
</u>
Given, in a data set with a range of 55.4 to 105.4 and 400 observations.
There are 176 observations below the value of 86, and we need to find the percentile for 86.
We know that, percentile formula = 
Percentile of 86 = 
Since, we cancelled 400 with 100 we get 4 , hence above expression becomes,
= 49
So, percentile of 86 = 49
Hence, 86 lies in the 49th percentile.