Answer:
The correct option is;
16 inches
Step-by-step explanation:
The parameters of the motion given are;
The diameter, D of the bicycle = 16 inches;
The distance the bike moves (forward) after the screw punctures the tire = 56·π inches
We note that the circumference of the bicycle = π·D = π × 16 = 16·π inches
Therefore;
56·π inches/(16·π inches) = 3.5
Showing that the bicycle moves three and half complete turns (revolution) where after each complete turn, the screw starts from the bottom of the tire.
The height, h of the screw in the final half turn is given by the relation;
h = A×cos(Bx - C) + D
A = Amplitude of the motion = Diameter/2 = 16/2 = 8
P = The period of the motion 2·π/B
B·x = The angle described by the motion = Half of one revolution = π = 180°
C = Phase shift = π
D = The midline = Diameter/2 = 8 inches
Therefore;
h = 8×cos(π - π) + 8 = 16 inches
After the bike moves forward another 56·π inches the height of the screw = 16 inches.
Let <span>Jacob, Carol, Geraldo, Meg, Earvin, Dora, Adam, and Sally be represented by the letters J, C, G, M, E, D, A, and S respectively. </span>
<span>In part IV we are asked:
</span><span>What is the sample space of the pairs of potential clients that could be chosen?
</span><span>
Since the Sample Space is the set of all possible outcomes, we need to make a set (a list) of all the possible pairs, which are as follows:
{(J, C), (J, G), (J, M), (J, E), (J, D), (J, A), (J, S)
, </span>(C, G), (C, M), (C, E), (C, D), (C, A), (C, S)
<span>
</span> , (G, M), (G, E), (G, D), (G, A), (G, S)
<span>
,</span>(M, E), (M, D), (M, A), (M, S)
<span>
, </span>(E, D), (E, A), (E, S) <span>
, </span>(D, A), (D, S)
, (A, S).}
We can check that the number of the elements of the sample space, n(S) is
1+2+3+4+5+6+7=28.
This gives us the answer to the first question: <span>How many pairs of potential clients can be randomly chosen from the pool of eight candidates?
(Answer: 28.)
II) </span><span>What is the probability of any particular pair being chosen?
</span>
The probability of a particular pair to be picked is 1/28, as there is only one way of choosing a particular pair, out of 28 possible pairs.
III) <span>What is the probability that the pair chosen is Jacob and Meg or Geraldo and Sally?
The probability of choosing (J, M) or (G, S) is 2 out of 28, that is 1/14.
Answers:
I) 28
II) 1/28</span>≈0.0357
III) 1/14≈0.0714
IV)
{(J, C), (J, G), (J, M), (J, E), (J, D), (J, A), (J, S)
, (C, G), (C, M), (C, E), (C, D), (C, A), (C, S)
, (G, M), (G, E), (G, D), (G, A), (G, S)
,(M, E), (M, D), (M, A), (M, S)
, (E, D), (E, A), (E, S)
, (D, A), (D, S)
, (A, S).}