Answer:
3 can you think of other examples of toxic substances not listed in the gizmo from science 101 at Stephen decatur high
Answers;
-The P generation has yellow and green seeds.
-The F1 generation has all yellow seeds.
-The F2 generation has yellow and green seeds.
Explanation;
Yellow seed color (dominant)
Green seed color (recessive)
P generation: In Mendel's experiments the parental generation.
Yellow seed color
F1 generation: In Mendel's experiments the offspring of the P generation
Yellow seed color and
Green seed color
F2 generation: In Mendel's experiments the offspring of the F1 generation
<span>Chlorophyll is essential in photosynthesis, allowing plants to absorb energy from light. Chlorophylls absorb light most strongly in the blue portion of the electromagnetic spectrum as well as the red portion.
The absorption spectrum of chlorophyll a alone underestimates the effectiveness of certain wavelengths in driving photosynthesis. This is partly because accessory pigments with different absorption spectra are also photosynthetically important in chloroplasts and broaden the spectrum of colors that can be used for photosynthesis.</span>
The correct answer is that "xylem transports water, stomata take in carbon dioxide, and chlorophyll absorbs sunlight." The xylem is a vascular structure in plants that transport water, the phloem is another vascular structure in plants that transport nutrients. The stomata (singular; stoma) is the one responsible for the plants' gas exchange (takes in carbon dioxide, releases oxygen). The chlorophyll is what makes the green pigment of the leaves and mostly because of the presence of chloroplasts, the organelle in plant cells responsible for photosynthesis.
Answer:
All crosses and proportions, genotypes and phenotypes are attached.
Explanation:
a. Within living organisms, staining is a characteristic governed by a polygenic inheritance, which means that there is more than one gene involved in the staining process. as you already know, each gene has two alleles, if a trait is controlled by 2 genes, it means that we will have 4 alleles at the crosses.
From the description between dominance and recessivity between the alleles that control the colors of the pepper, shown in the question above, we can see that for the crossing between a red pepper and a green pepper, being able to generate a completely orange offspring, it would be necessary that the genotype of the parent peppers was: Red: RGRG, green: rgrg.
This would generate an orange-colored RrGg offspring, as you can see at the F1 crossing.
b. When individuals of F1 offspring are crossed, the combination of alleles and the determination of genotypes and phenotypes becomes much more complex, because instead of 4 alleles, we will have the combination of 16 alleles among themselves. Once again we will need to rely on the description of dominance and recessivity shown in the question above, so that from the crossing between the alleles of each gene, we can reach a conclusion, as you can see in the F2 crossing.