answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serjik [45]
2 years ago
8

PLEASEEE PLEASEEE HELP

Chemistry
1 answer:
kati45 [8]2 years ago
3 0

Answer:

= 49.674 g NaCl

Explanation:

From the equation;

1 mole of Sodium metal produces 2 moles sodium chloride

This means;

23 g of Na will produce 116.88 g of NaCl

Therefore;

11.5 g will generate;

 = (11.5 × 116.88)/23

 =  58.44 g of NaCl

But;

Percentage yield = (Actual yield/Theoretical yield)× 100%

         85 /100 = Actual yield /58.44 g

Thus;

Actual yield = 0.85 × 58.44

                  = 49.674 g NaCl

You might be interested in
How many moles of NH3 from when 32.4 L of H2 gas completely reacts at STP according to the following reaction? Remember 1 mol of
Travka [436]
N_2 (g) + 3H_2 (g) rightarrow 2NH_3 (g) volume of H_2 = 32.44 At STP 1 mole of H_2 = 22.4L ? mole of H_2 = 32.4L therefore moles of H_2
8 0
2 years ago
If 25 g of NH3, and 96 g of H2S react according to the following reaction, what is the
jeyben [28]

25 g of NH₃ will produce 47.8 g of (NH₄)₂S​

<u>Explanation:</u>

2 NH₃ + H₂S ----> (NH₄)₂S​

Molecular weight of NH₃ = 17 g/mol

Molecular weight of (NH₄)₂S​ = 68 g/mol

According to the balanced reaction:

2 X 17 g of NH₃ produces 68 g of (NH₄)₂S​

1 g of NH₃ will produce \frac{68}{34} g of (NH₄)₂S​

25g of NH₃ will produce \frac{65}{34} X 25 g of (NH₄)₂S​

                                     = 47.8 g of (NH₄)₂S​

Therefore, 25 g of NH₃ will produce 47.8 g of (NH₄)₂S​

4 0
2 years ago
The means of X ? ⊙_⊙⊙_⊙⊙_⊙​
julsineya [31]

Answer:

x means unknown it is an unknown value.

For example if you have 2 x you have 2 u know values.

Explanation:

If you want us to explain it further please provide a picture.

5 0
2 years ago
Read 2 more answers
The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl),
choli [55]

Answer:

The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl), and calcium chloride (CaCl2) (not in that order). Which boiling point corresponds to calcium chloride?

A. 101.53° C

B. 100.00° C

C. 101.02° C

D. 100.51° C

Which of the following solutions will have the lowest freezing point?

A. 1.0 mol/kg sucrose (C12H22O11)

B. 1.0 mol/kg lithium chloride (LiCl)

C. 1.0 mol/kg sodium phosphide (Na3P)

D. 1.0 mol/kg magnesium fluoride (MgF2)

Which of the following compounds will be most effective in melting the ice on the roads when the air temperature is below zero?

A. sodium iodide (NaI)

B. magnesium sulfate (MgSO4)

C. potassium bromide (KBr)

D. All will be equally effective.

Four different solutions have the following vapor pressures at 100°C. Which solution will have the greatest boiling point?

A. 98.7 kPa

B. 96.3 kPa

C. 101.3 kPa

D. 100.2 kPa

Four different solutions have the following boiling points. Which boiling point corresponds to a solution with the lowest freezing point?

A. 101.2°C

B. 105.9°C

C. 102.7°C

D. 108.1°C

Explanation:

The following are the answers to the different questions: 

The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl), and calcium chloride (CaCl2) (not in that order). Which boiling point corresponds to calcium chloride?

A. 101.53° C

Which of the following solutions will have the lowest freezing point?

D. 1.0 mol/kg magnesium fluoride (MgF2)

Which of the following compounds will be most effective in melting the ice on the roads when the air temperature is below zero?

A. sodium iodide (NaI)

Four different solutions have the following vapor pressures at 100°C. Which solution will have the greatest boiling point?

B. 96.3 kPa

Four different solutions have the following boiling points. Which boiling point corresponds to a solution with the lowest freezing point?

D. 108.1°C

5 0
2 years ago
A 50.0 mL sample of 0.600 M calcium hydroxide is mixed with 50.0 mL sample of 0.600 M hydrobromic acid in a Styrofoam cup. The t
TEA [102]

Explanation:

The reaction equation will be as follows.

     Ca(OH)_{2}(aq) + 2HBr(aq) \rightarrow CaBr_{2}(aq) + 2H_{2}O(l)

So, according to this equation, 1 mole Ca(OH)_{2} = 2 mol HBr = 1 mol CaBr_{2}

Therefore, calculate the number of moles of calcium hydroxide as follows.

     No. of moles of Ca(OH)_{2} = V \times Molarity

                                    = 50 \times 0.6

                                    = 30 mmol

Similarly, calculate the number of moles of HBr as follows.

        No. of moles of HBr = M \times V

                                          = 50 \times 0.6

                                          = 30 mmol

This means that the limiting reactant is HBr.

So, no. of moles of CaBr_{2} = 30 \times \frac{1}{2}

                                                     = 15 mmol

Hence, calculate the amount of heat released as follows.

                Heat released in the reaction(q) = m \times s \times \Delta T

as,    m = mass of solution

and,             Density = \frac{mass}{volume}

or,                  mass = Density × Volume

                               = 1.08 g/ml \times (50 + 50) ml

                               = 108 g

where,    s = specific heat of solution = 4.18 j/g.k

and,        change in temperature \Delta T = (26 - 23)^{o}C

                                                                 = 3&#10;^{o}C

Hence, the heat released will be as follows.

                   q = m \times s \times \Delta T

                        q = 108 \times 4.18 \times 3^{o}C

                           = 1354.32 joule

or,                        = 1.354 kJ       (as 1 kJ = 1000 J)    

Also,          \Delta H_{rxn} = \frac{-q}{n}

                              = \frac{-1.354}{15 \times 10^{-3}}

                              = -90.267 kJ/mol

Thus, we can conclude that the enthalpy change for the given reaction is -90.267 kJ/mol.

6 0
2 years ago
Other questions:
  • 7. Two teams are competing in a tug-of-war contest. Team A is pulling at 4000N and Team B is pulling at 4900N is the opposite di
    8·2 answers
  • Acetone and sodium chloride both have similiar mass. Explain why their other properties differ.
    9·2 answers
  • If 89.6 joules of heat are needed to heat 20.0 grams of iron from 30.0°c to 40.0°c, what is the specific heat of the iron in jg?
    13·1 answer
  • The circles, or orbits, for electrons are called energy levels. Each level can hold only a certain number of electrons. Add elec
    11·2 answers
  • A soft drink contains 11.5% sucrose (C12H22O11) by mass. How much sucrose, in grams, is contained in 355 mL (12 oz) of the soft
    7·2 answers
  • How much heat is required to raise the temperature of 670g of water from 25.7"C to 66,0°C? The specific heat
    13·1 answer
  • For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 175-cm-long vertical cylinder with both the top a
    13·1 answer
  • Consider the following hypothetical reaction: 2 P + Q → 2 R + S The following mechanism is proposed for this reaction: P + P Q
    11·1 answer
  • Consider 2.4 moles of a gas contained in a 4.0 L bulb at a constant temperature of 32°C. This bulb is connected to an evacuated
    14·1 answer
  • Lin received 200 new laptops to be issued to company employees. Lin was asked to set them up and distribute them to everyone on
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!