Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.
The answer would be B. Brimone. I had the same question before, but let me know if it is not right. Cause certain schools have the same questions but different answers for them.
The Chemistry Regents is one of the four science Regents exams. The other three are Earth Science, Living Environment, and Physics. You'll need to pass at least one of these four exams to graduate high school.
Answer:
A) homotopic and B) enantiotopic
Explanation:
Protons chemically equivalent are those that have the same chemical shift, also if they are interchangeable by some symmetry operation or by a rapid chemical process.
The existence of symmetry axes, Cn, that relate to the protons results in the protons being homotopic, that is chemically equivalent in both chiral and aquiral environments.
The existence of a plane of symmetry, σ, makes the protons related by it, are enantiotopic and these protons will only be equivalent in an aquiral medium; if the medium is chiral both protons will be chemically NOT equivalent. The existence of a center of symmetry, i, in the molecule makes the related protons through it enantiotopic and therefore chemically only in the aquiral medium.
Diastereotopic protons cannot be interconverted by any symmetry operation and they are different, with different chemical displacement.