Ok to find the answer all you have to do is multiply 87.60*10=876
then do the same for 26.60*10=256 then you subtract 856-256
=620
Written in 2-point form, the equation of the line is
y = (y2-y1)/(x2-x1)·(x-x1) +y1
y = (3-(-5))/(-6-(-4))·(x-(-4)) + (-5)
y = 8/-2·(x +4) - 5
y = -4x -21
The value of b is -21.
Answer: The ball hits the ground at 5 s
Step-by-step explanation:
The question seems incomplete and there is not enough data. However, we can work with the following function to understand this problem:
(1)
Where
models the height of the ball in meters and
the time.
Now, let's find the time
when the ball Sara kicked hits the ground (this is when
):
(2)
Rearranging the equation:
(3)
Dividing both sides of the equation by
:
(4)
This quadratic equation can be written in the form
, and can be solved with the following formula:
(5)
Where:
Substituting the known values:
(6)
Solving we have the following result:
This means the ball hit the ground 5 seconds after it was kicked by Sara.
Answer:
BAngle AOB is half as big as angle COB.
Answer:
<u></u>
Explanation:
The figure attached shows the <em>Venn diagram </em>for the given sets.
<em />
<em><u>a) What is the probability that the number chosen is a multiple of 3 given that it is a factor of 24?</u></em>
<em />
From the whole numbers 1 to 15, the multiples of 3 that are factors of 24 are in the intersection of the two sets: 3, 6, and 12.
There are a total of 7 multiples of 24, from 1 to 15.
Then, there are 3 multiples of 3 out of 7 factors of 24, and the probability that the number chosen is a multiple of 3 given that is a factor of 24 is:
<em><u /></em>
<em><u>b) What is the probability that the number chosen is a factor of 24 given that it is a multiple of 3?</u></em>
The factors of 24 that are multiples of 3 are, again, 3, 6, and 12. Thus, 3 numbers.
The multiples of 3 are 3, 6, 9, 12, and 15: 5 numbers.
Then, the probability that the number chosen is a factor of 24 given that is a multiple of 3 is: