Answer:
Option C is correct.
The minimum amount of material that is needed for a fission reaction to keep going is called the critical mass.
Explanation:
Nuclear fission is the term used to describe the breakdown of the nucleus of a parent isotope into daughter nuclei.
Normally, the initial energy supplied for nuclear fission is the energy to initiate the first breakdown of the first set of radioactive isotopes that breakdown. Once that happens, the energy released from the first breakdown is enough to drive further breakdown of numerous isotopas in a manner that leads to more energy generation.
But, for this to be able to be sustained and not fizzle out, a particular amount of radioactive material to undergo nuclear fission must be present. This particular amount is termed 'critical mass'
Hope this Helps!!!
Hello!
Calvin told Marie that they could continue to add solute until the reached 40 grams because the solution was still unsaturated.
Unsaturated solutions are those in which the solvent (in this case water) can still dissolve more solute (in this case KNO₃) at the given pressure and temperature. This can be seen visually when adding more solute doesn't result in the presence of grains of solids that settle in the bottom of the flask. That happens because the rate of dissolving is higher than the rate of crystallization.
Have a nice day!
I don't know if you didn't gave a picture choice or if i didn't get the picture.
But lets call this atom A. Electron dot formula doesn't require Neutron and Protons, its main concern is valance elections.
So atom A has 5 electrons which means 2,3 it has 3 valance electrons. Its dot formula will become
:A.
I hope this helped.
Answer:
10
Explanation:
pH is defined as the negative logarithm of the concentration of hydrogen ions.
Thus,
pH = - log [H⁺]
Thus, from the formula, more the concentration of the hydrogen ions or more the acidic the solution is, the less is the pH value of the solution.
Thus, solution with pH = 3 will be more acidic than solution with pH =4
Thus, concentration of the [H⁺] when pH =3
3 = - log [H⁺]
[H⁺] = 10⁻³ M
For pH = 4, [H⁺] = 10⁻⁴ M
<u>hence, pH = 3 is 10 times more acidic than pH = 4</u>
Answer:
Explanation:
In 150 ml of .06 g / ml solution , gram of iodine = 150 x .06 g = 9 g
Let volume of given concentration of .12 g / ml required be V
In volume V , gram of iodine = V x .12 g
According to question
V x .12 = 9 g
V = 9 / .12 = 75 ml
So, 75 ml of .12 g/ml will be taken and it is diluted to the volume of 150 ml to get the solution of required concentration .