Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s
The one that is loaded worst. The overall weight is not important; tongue weight is a matter of loading. Our 12,000 lb snow cat trailer, which has stops to position the cat properly, has under 100 lbs tongue weight. Excessive tongue weight is a Bad Thing because it reduces weight on the towing vehicle's front wheels, leading to instability.
<span>Most objects tend to contain the same numbers of positive and negative charge because this is the most stable situation. In fact, if an object has an excess of positive charge, it tends to attract an equal number of negative charges to balance this effect and restore neutrality: the attracted negative charges combine with the excess of positive charges, leaving the object electrically neutral.</span>
Answer:
Explanation:
Analysis of structure gives
a=gsinθ−μkgcosθ
Notice that all the expression are right but we want to know of we can simplify the expression further.
We want to analyse if we can still further simplify the expression,
Inspecting the Right hand side of the equation, we notice that the acceleration due to gravity is common to both side, so we can bring it out i.e.
So option a is wrong because the expression can be simplified further to
a=g(sinθ−μkcosθ)
Option b is right and the best option.
Since we are given that, g=9.8m/s²
We can as well substitute that to option a
So we will have
a=9.8metre/second²(sinθ−μkcosθ)
Also option C is correct but it is not best inserting the values of g directly without simplifying the expression first
So it will have been the best option if it was written as
a=9.8metre/second²(sinθ−μkcosθ)
So the best option is B.
Answer:
The drift velocity is 
Explanation:
Given :
Area of metallic wire,
.
Current through wire , 
Mobile charge density , 
Charge value , 
We need to find drift velocity , 
Now, we know :

Therefore, 
Putting all given values in above equation we get,


Hence, this is the required solution.