Density

is given by

where m is the mass of the object
V is the Volume of the object
let m1 be the mass of the smaller cube
let m2 be the mass of the larger cube
you know that the larger cube has twice the mass of the smaller cube
or m2=2*m1
so apply this information into the density equation and you can determine the volume of the larger cube
The answer to the question is B.
Answer:

Four raised to the one-sixth power
Step-by-step explanation:
We want to simplify: ![\dfrac{\sqrt{4} }{\sqrt[3]{4} }](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%7B4%7D%20%7D%7B%5Csqrt%5B3%5D%7B4%7D%20%7D)
First, we apply the fractional law of indices to each term.
![\text{If } a^{1/x}=\sqrt[x]{a},$ then:\\\sqrt{4}=4^{1/2}\\\sqrt[3]{4}=4^{1/3}](https://tex.z-dn.net/?f=%5Ctext%7BIf%20%20%7D%20a%5E%7B1%2Fx%7D%3D%5Csqrt%5Bx%5D%7Ba%7D%2C%24%20then%3A%5C%5C%5Csqrt%7B4%7D%3D4%5E%7B1%2F2%7D%5C%5C%5Csqrt%5B3%5D%7B4%7D%3D4%5E%7B1%2F3%7D)
We then have:
![\dfrac{\sqrt{4} }{\sqrt[3]{4} }=\dfrac{4^{1/2} }{4^{1/3} }\\$Applying the division law of indices: \dfrac{a^m }{a^n }=a^{m-n}\\\dfrac{4^{1/2} }{4^{1/3} }=4^{1/2-1/3}\\\\=4^{1/6}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%7B4%7D%20%7D%7B%5Csqrt%5B3%5D%7B4%7D%20%7D%3D%5Cdfrac%7B4%5E%7B1%2F2%7D%20%7D%7B4%5E%7B1%2F3%7D%20%7D%5C%5C%24Applying%20the%20division%20law%20of%20indices%3A%20%5Cdfrac%7Ba%5Em%20%7D%7Ba%5En%20%7D%3Da%5E%7Bm-n%7D%5C%5C%5Cdfrac%7B4%5E%7B1%2F2%7D%20%7D%7B4%5E%7B1%2F3%7D%20%7D%3D4%5E%7B1%2F2-1%2F3%7D%5C%5C%5C%5C%3D4%5E%7B1%2F6%7D)
The correct option is B.
Answer:
160m/s
Step-by-step explanation:
The object can hit the ground when t = a; meaning that s(a) = s(t) = 0
So, 0 = -16a² + 400
16a² = 400
a² = 25
a = √25
a = 5 (positive 5 only because that's the only physical solution)
The instantaneous velocity is
v(a) = lim(t->a) [s(t) - s(a)]/[t-a)
Where s(t) = -16t² + 400
and s(a) = -16a² + 400
v(a) = Lim(t->a) [-16t² + 400 + 16a² - 400]/(t-a)
v(a) = Lim(t->a) (-16t² + 16a²)/(t-a)
v(a) = lim (t->a) -16(t² - a²)(t-a)
v(a) = -16lim t->a (t²-a²)(t-a)
v(a) = -16lim t->a (t-a)(t+a)/(t-a)
v(a) = -16lim t->a (t+a)
But a = t
So, we have
v(a) = -16lim t->a 2a
v(a) = -32lim t->a (a)
v(a) = -32 * 5
v(a) = -160
Velocity = 160m/s
Answer:
StartRoot 53 EndRoot units
XY = √53
Step-by-step explanation:
Choose which is point 1 and point 2 so you don't confuse the coordinates.
Point 1 (–4, 0) x₁ = –4 y₁ = 0
Point 2 (3, 2) x₂ = 3 y₂ = 2
Use the formula for the distance between two points.




Therefore the line of segment XY is √53.