Answer:
The dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches
Step-by-step explanation:
We have that:

Let the dimension of the paper be x and y;
Such that:


So:

Substitute 128 for Area

Make x the subject

When 1 inch margin is at top and bottom
The length becomes:


When 2 inch margin is at both sides
The width becomes:


The New Area (A) is then calculated as:

Substitute
for x

Open Brackets

Collect Like Terms



To calculate the smallest possible value of y, we have to apply calculus.
Different A with respect to y

Set

This gives:

Collect Like Terms

Multiply through by 


Divide through by 2

Take square roots of both sides



Recall that:



Recall that the new dimensions are:


So:




To double-check;
Differentiate A'




The above value is:

This means that the calculated values are at minimum.
<em>Hence, the dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches</em>
<h2>
Answer:</h2>
<h2>
Step-by-step explanation:</h2>
I've drawn a graph in order to a better understanding of this problem. We know that:
BC is perpendicular to AC
∠DBE = 2x - 1
∠CBE = 5x - 42
Let's call the intersection of line BC and AC the point P, so:
∠P=90°
And points B, P and C form the triangle ΔBPC. On the other hand, ∠CBE and ∠PCB are Alternate Interior Angles, so:
∠PCB = ∠CBE = 5x - 42
Moreover:
∠PBC = 2x - 1 - (5x - 42)
∠PBC = 2x - 1 - 5x + 42
∠PBC = -3x + 41
The internal angles of any triangle add up to 180°. Hence for ΔBPC:
90° + ∠PBC + ∠PCB = 180°
90° - 3x + 41 + 5x - 42 = 180°
2x + 89 = 180
2x = 91
x = 45.5°
First of all, a bit of theory: since the area of a square is given by

where s is the length of the square. So, if we invert this function we have
.
Moreover, the diagonal of a square cuts the square in two isosceles right triangles, whose legs are the sides, so the diagonal is the hypothenuse and it can be found by

So, the diagonal is the side length, multiplied by the square root of 2.
With that being said, your function could be something like this:
double diagonalFromArea(double area) {
double side = Math.sqrt(area);
double diagonal = side * Math.sqrt(2);
return diagonal;
}
Answer: 2
<u>Explanation:</u>
A pond had 60 fish but 10 were added so now the pond has 70 fish.
The probability of choosing a carp is 1/2 so
= 35 are now carp.
There were 27 carp and now there are 35 carp so 8 carp were added.
10 fish were added and 8 of them were carp so 2 of them were tench.
Answer: There are 20 socks in the first case and there are 75 socks in the second case.
Step-by-step explanation:
Since we have given that
Number of equal groups = 5
Let the total number of socks be 's'.
According to question, expression will be
Now, Suppose number of socks in each group = 4
So, it will become,
Suppose number of socks in each group = 15
So, Total number of socks become
Hence, there are 20 socks in the first case and there are 75 socks in the second case.