Answer:
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Step-by-step explanation:
We have a sample of executives, of size n=160, and the proportion that prefer trucks is 26%.
We have to calculate a 95% confidence interval for the proportion.
The sample proportion is p=0.26.
The standard error of the proportion is:
The critical z-value for a 95% confidence interval is z=1.96.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:

The 95% confidence interval for the population proportion is (0.192, 0.328).
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Answer:
3rd graph down
Step-by-step explanation:
greens are x and carrots are y in my equations
2x - y >= 3
x + 2y < 4
The first equation is solid and will highlight everything to the right of it because it is a >
the second is dashed and will highlight everything to the left of it because it is a <
the only 2 graphs that show this are 1 and 3
looking at the points you can see that the points for the solid line are both the same so ignore those and go to the dashed lined ones.
on the first graph the points are (0,4)
plugging those into our equation gives us 0 + 2*4 <4
or 8<4 which doesnt make sense making 3 the correct graph
(sorry my answer wasnt posting so i had to start over and make it less detailed, but comment if you need any explanation)
Answer:
The graphs are missing, but we can find the inequality for this problem:
She has $60.
The price of a T-shirt is $10, the price of a sweatshirt is $14.
If T is the number of T-shirts she buys, and S is the number of sweatshirts that she buys, we have:
T + S ≥ 5 (because she wants to buy at least 5 items)
T*$10 + S*$14 < $60 (because she wants to spend under $60)
Those two inequalities define the number of T-shirts and sweatshirts that she can buy.