To answer the problem we would be using this formula which isv = sqrt(T/(m/L))
v = sqrt(100 N / [(0.100 kg)/(1.0 m)])
v = 31.62 m/s
v = fλ
31.62 m/s = (95 Hz)(λ)
λ = 0.333 m
For every wavelength along a string there will be 2 antinodes.
1.0 m / 0.333 m = 3
3 * 2 = 6 antinodes
6 + 1 = 7 nodes
Change in velocity of larger moose: (1/3)v - v = -(2/3)v
<span>change in velocity of small moose: (1/3)v - (-v) = (4/3)v </span>
<span>- (change in velocity of larger moose)/(change in velocity of smaller moose) = 2
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer: the pair of sunglasses
Explanation:
A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.
On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.
Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.
If the scale reads 650N, then the mass of whoever it is standing on the scale is
(weight) / (gravity) = (650N) / (9.8 m/s²) = 66.3 kilograms .
It's not MY mass, even if I'm the one standing on the scale.
If I stand on a scale and it reads 650 N, the scale is broken.
The prime factors that affect the ability of substances to transfer the thermal energy to heat are the temperature difference between the two objects, area of cross-section, time, and distance travelled by the thermal energy.
<u>Explanation:
</u>
The process of heat conduction takes place through contact between two or more objects. But this conduction depends on multiple factors that are responsible for thermal conduction. They are-
- Temperature Difference(
) - The two objects must have a temperature difference else there will be no thermal conduction between them. The more the difference in their temperatures, the more thermal energy flows from one object to the other.
- Area of Cross-section (A) - Larger areas of contact provide as better medium of thermal conduction.
- Time (t) - The more time we give for the thermal conduction, the more energy is transmitted from one system to the other.
- Distance Travelled (l) - The longer the distance, lesser the conduction. Means, the distance should be minimized in order to achieve the optimum thermal conduction between two objects.
Consider metal pot and its handle, it is being boiled for 15 m. The molecules present near the source of heat, showing fast vibration and bounce off. It actually indicates the heats of substance. That’s why, handle remains hot as heat conduction takes place. It can be estimated by,

k - Thermal conductivity of the material, measured in J/s.m.