answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tems11 [23]
2 years ago
11

The 600MW power plant has an efficiency of 36% with 15% of the waste heat being released to the atmosphere as stack heat and ano

ther 85% taken away in the cooling water. Instead of drawing water from the river, heating it, and returning it to the river, this plant uses an evaporative cooling tower wherein heat is released to the atmosphere as cooling water vaporized. At what rate must 15ºC makeup water be provided from the river to offset the water lost in the cooling tower?
Engineering
1 answer:
ozzi2 years ago
8 0

Answer:

rate of makeup water added is 367.75 kg/s

Explanation:

given data

output power = 600 MW

efficiency = 36 %

waste heat = 15%

heat taken away in cooling tower = 85%

to find out

At what rate must 15ºC makeup water be provided from the river to offset the water lost in the cooling tower

solution

input power = \frac{power}{efficiency}

input power = \frac{600}{0.36}

input power = 1666.67 MW

total heat = input - output

total heat = 1666.67 - 600

total heat = 1066.67 MW

and we know

15% of waste heat is released to atmosphere

so Q atm = 0.15 × 1066.667

Q atm =  160 MW

and

and 85% of heat is taken away in the cooling water  so

Q cooling tower = 0.85 ×  1066.667

Q cooling tower = 906.66 MW

so

we know at 15ºC from saturated water tables  hfg will be

hfg = 2465.4 kJ/kg

so rate of water lost in cooling tower added by means of make up water  that is

Q cooling tower = m × hfg

906.66 × 1000 =  m × 2465.4

m = 367.75 kg/s

so rate of makeup water added is 367.75 kg/s

You might be interested in
A pipe is insulated such that the outer radius of the insulation is less than the critical radius. Now the insulation is taken o
irina [24]

Answer:

the heat transfer from the pipe will decrease when the insulation is taken off for r₂< r_{cr}

where;

r₂ = outer radius

r_{cr} = critical radius

Explanation:

Note that the critical radius of insulation depends on the thermal conductivity of the insulation k and the external convection heat transfer coefficient h .

r_{cr} =\frac{k}{h}

The rate of heat transfer from the cylinder increases with the addition of insulation for outer radius less than  critical radius (r₂< r_{cr}) 0,  and reaches a maximum when r₂ = r_{cr}, and starts to decrease for r₂< r_{cr}. Thus, insulating the pipe may actually increase the rate of heat transfer from the pipe instead of decreasing it when r₂< r_{cr} .

7 0
2 years ago
The wall of drying oven is constructed by sandwiching insulation material of thermal conductivity k = 0.05 W/m°K between thin me
masha68 [24]

Answer:

86 mm

Explanation:

From the attached thermal circuit diagram, equation for i-nodes will be

\frac {T_ \infty, i-T_{i}}{ R^{"}_{cv, i}} + \frac {T_{o}-T_{i}}{ R^{"}_{cd}} + q_{rad} = 0 Equation 1

Similarly, the equation for outer node “o” will be

\frac {T_{ i}-T_{o}}{ R^{"}_{cd}} + \frac {T_{\infty, o} -T_{o}}{ R^{"}_{cv, o}} = 0 Equation 2

The conventive thermal resistance in i-node will be

R^{"}_{cv, i}= \frac {1}{h_{i}}= \frac {1}{30}= 0.033 m^{2}K/w Equation 3

The conventive hermal resistance per unit area is

R^{"}_{cv, o}= \frac {1}{h_{o}}= \frac {1}{10}= 0.100 m^{2}K/w Equation 4

The conductive thermal resistance per unit area is

R^{"}_{cd}= \frac {L}{K}= \frac {L}{0.05} m^{2}K/w Equation 5

Since q_{rad}  is given as 100, T_{o}  is 40 T_ \infty  is 300 T_{\infty, o}  is 25  

Substituting the values in equations 3,4 and 5 into equations 1 and 2 we obtain

\frac {300-T_{i}}{0.033} +\frac {40-T_{i}}{L/0.05} +100=0  Equation 6

\frac {T_{ i}-40}{L/0.05}+ \frac {25-40}{0.100}=0

T_{i}-40= \frac {L}{0.05}*150

T_{i}-40=3000L

T_{i}=3000L+40 Equation 7

From equation 6 we can substitute wherever there’s T_{i} with 3000L+40 as seen in equation 7 hence we obtain

\frac {300- (3000L+40)}{0.033} + \frac {40- (3000L+40)}{L/0.05}+100=0

The above can be simplified to be

\frac {260-3000L}{0.033}+ \frac {(-3000L)}{L/0.05}+100=0

\frac {260-3000L}{0.033}=50

-3000L=1.665-260

L= \frac {-258.33}{-3000}=0.086*10^{-3}m= 86mm

Therefore, insulation thickness is 86mm

8 0
2 years ago
While at a concert you notice five people in the crowd headed in the same direction. Your tendency to group them is due to? *
Vlada [557]

Answer:

common fate

Explanation:

The gestalt effect may be defined as the ability of our brain to generate the whole forms from the groupings of lines, points, curves and shapes. Gestalt theory lays emphasis on the fact that whole of anything is much greater than the parts.

Some of the principles of Gestalt theory are proximity, similarity, closure, symmetry & order, figure or ground and common fate.

Common fate : According to this principle, people will tend to group things together which are pointed towards or moving in a same direction. It is the perception of the people that objects moving together belongs together.

7 0
2 years ago
A 5-cm-diameter shaft rotates at 4500 rpm in a 15-cmlong, 8-cm-outer-diameter cast iron bearing (k = 70 W/m·K) with a uniform cl
-BARSIC- [3]

Answer:

(a) the rate of heat transfer to the coolant is Q = 139.71W

(b) the surface temperature of the shaft T = 40.97°C

(c) the mechanical power wasted by the viscous dissipation in oil 22.2kW

Explanation:

See explanation in the attached files

5 0
2 years ago
Link BD consists of a single bar 36 mm wide and 18 mm thick. Knowing that each pin has a 12-mm diameter, determine the maximum v
MAXImum [283]

Answer:

hello the diagram attached to your question is missing attached below is the missing diagram

answer :

a) 48.11 MPa

b) - 55.55 MPa

Explanation:

First we consider the equilibrium moments about point A

∑ Ma = 0

( Fbd * 300cos30° ) + ( 24sin∅ * 450cos30° ) - ( 24cos∅ * 450sin30° ) = 0

therefore ;<em> Fbd = 36 ( cos ∅tan30° - sin∅ ) kN  ----- ( 1 )</em>

A ) when ∅ = 0

Fbd = 20.7846 kN

link BD will be under tension when ∅ = 0, hence we will calculate the loading area using this equation

A = ( b - d ) t

b = 12 mm

d = 36 mm

t = 18

therefore loading area ( A ) = 432 mm^2

determine the maximum value of average normal stress in link BD  using the relation below

бbd = \frac{Fbd}{A}  = 20.7846 kN / 432 mm^2  =  48.11 MPa

b) when ∅ = 90°

Fbd = -36 kN

the negativity indicate that the loading direction is in contrast to the assumed direction of loading

There is compression in link BD

next we have to calculate the loading area using this equation ;

A = b * t

b = 36mm

t = 18mm

hence loading area = 36 * 18 = 648 mm^2

determine the maximum value of average normal stress in link BD  using the relation below

бbd = \frac{Fbd}{A} = -36 kN / 648mm^2 = -55.55 MPa

4 0
1 year ago
Other questions:
  • Which of the two materials (brittle vs. ductile) usually obtains the highest ultimate strength and why?
    5·1 answer
  • 5. A typical paper clip weighs 0.59 g and consists of BCC iron. Calculate (a) the number of
    5·1 answer
  • A charge of 2.0 × 10–10 C is to be stored on each plate of a parallel-plate capacitor having an area of 650 mm2 (1.0 in.2 ) and
    14·1 answer
  • A signalized intersection approach has an upgrade of 4%. The total width of the cross street at this intersection is 60 feet. Th
    15·1 answer
  • The basic barometer can be used to measure the height of a building. If the barometric readings at the top and the bottom of a b
    15·1 answer
  • Sea water with a density of 1025 kg/m3 flows steadily through a pump at 0.21 m3 /s. The pump inlet is 0.25 m in diameter. At the
    8·1 answer
  • Hot combustion gases, modeled as air behaving as an ideal gas, enter a turbine at 10 bar, 1500 K and exit at 1.97 bar and 900 K.
    7·1 answer
  • The mass fractions of a mixture of gases are 15 percent nitrogen, 5 percent helium, 60 percent methane, and 20 percent ethane. T
    9·1 answer
  • A rectification column is fed 100 kg mol/h of a mixture of 50 mol % benzene and 50 mol % toluene at 101.32 kPa abs pressure. The
    5·1 answer
  • An airplane in level flight at an altitude h and a uniform speed v passes directly over a radar tracking station A. Calculate th
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!