Answer:
The value of q that maximize the profit is q=200 units
Step-by-step explanation:
we know that
The profit is equal to the revenue minus the cost
we have
---> the revenue
---> the cost
The profit P(q) is equal to

substitute the given values



This is a vertical parabola open downward (because the leading coefficient is negative)
The vertex represent a maximum
The x-coordinate of the vertex represent the value of q that maximize the profit
The y-coordinate of the vertex represent the maximum profit
using a graphing tool
Graph the quadratic equation
The vertex is the point (200,-120)
see the attached figure
therefore
The value of q that maximize the profit is q=200 units
Answer:
The probability of getting a sample with 80% satisfied customers or less is 0.0125.
Step-by-step explanation:
We are given that the results of 1000 simulations, each simulating a sample of 80 customers, assuming there are 90 percent satisfied customers.
Let
= <u><em>sample proportion of satisfied customers</em></u>
The z-score probability distribution for the sample proportion is given by;
Z =
~ N(0,1)
where, p = population proportion of satisfied customers = 90%
n = sample of customers = 80
Now, the probability of getting a sample with 80% satisfied customers or less is given by = P(
80%)
P(
80%) = P(
) = P(Z
-2.24) = 1 - P(Z < 2.24)
= 1 - 0.9875 = <u>0.0125</u>
The above probability is calculated by looking at the value of x = 2.24 in the z table which has an area of 0.9875.
Answer:
B
Step-by-step explanation: