Answer:
All real numbers greater than -3
Step-by-step explanation:
The domain of a log is the baseline is greater than 0.
Set x + 3 greater than zero and solve
x + 3 > 0
x > -3
Step-by-step explanation:
1st
8x-59 + 2x-11 = 180
10x -70 = 180
10x = 180 + 70
10x = 250
x = 25
2nd
8x - 59 = 15y + 6
8(25) -59 = 15y + 6
200 -59 = 15y + 6
141 = 15y + 6
15y + 6 = 141
15y = 141 - 6
15y = 135
y = 135/15
y = 9
Keep in mind its been a while since i did this type of work lol.....
did you try to draw it out on a grid paper....what will be helpful is if you got the coordinates and put the points down and then if you connect the dots you get your shape now you will count the unis in which the width and length is timed. so like if you had grid and it gave you coordinates and you did all that now you will count how many units is in the width and how many in the length.
but your best answer might be 14 units x 4 units
Your answer is E. $25.
First let under 12 = u, over 12 = o, and adults = a.
We can now write the equations:
2u + 3a + 3o = 174
4u + 2a = 122
a + o = 46
Because we know that a + o = 46, and 3a + 3o is in the first equation, we can multiply 46 by 3 to get what 3a + 3o equals. This makes 138.
Now we can substitute 138 into the first equation to get 2u + 138 = 174
2u = 36
u = 18
Now that we know what u equals, we can substitute it in to the second equation to get:
4(18) + 2a = 122
72 + 2a = 122
2a = 50
a = $25
I hope this helps! Let me know if you have any questions :)
Answer:
![\left[\begin{array}{cc}x&y\end{array}\right] * \left[\begin{array}{cc}3&1\\4&-2\end{array}\right] = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%5C%5C4%26-2%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The general matrix representation for this transformation would be:
![\left[\begin{array}{cc}x&y\end{array}\right] * A = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
As the matrix A should have the same amount of rows as columns in the firs matrix and the same amount of columns as the result matrix it should be a 2x2 matrix.
![\left[\begin{array}{cc}x&y\end{array}\right] * \left[\begin{array}{cc}a&b\\c&d\end{array}\right] = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
Solving the matrix product you have that the members of the result matrix are:
3x+4y = a*x + c*y
x - 2y = b*x + d*y
So the matrix A should be:
![\left[\begin{array}{cc}3&1\\4&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%5C%5C4%26-2%5Cend%7Barray%7D%5Cright%5D)