answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
1 year ago
10

A typical raindrop is much more massive than a mosquito and falling much faster than a mosquito flies. How does a mosquito survi

ve the impact? Recent research has found that the collision of a falling raindrop with a mosquito is a completely-inelastic collision. That is, the mosquito is "swept up" by the raindrop and ends up traveling along with the raindrop. Once the relative speed between the mosquito and the raindrop is zero, the mosquito is able to detach itself from the drop and fly away.
Part A

A hovering mosquito is hit by a raindrop that is 50 times as massive and falling at 8.1m/s , a typical raindrop speed. How fast is the raindrop, with the attached mosquito, falling immediately afterward if the collision is perfectly inelastic?

Part B

Because a raindrop is "soft" and deformable, the collision duration is a relatively long 8.0 ms. What is the mosquito's average acceleration, in g's, during the collision? The peak acceleration is roughly twice the value you found, but the mosquito's rigid exoskeleton allows it to survive accelerations of this magnitude. In contrast, humans cannot survive an acceleration of more than about 10 g.
Physics
2 answers:
sweet-ann [11.9K]1 year ago
8 0

Answer:

A: 7.94 m/s

B: 101.2 g

Explanation:

<u>PART A </u>

As stated in the question, this is a case of a completely-inelastic collision. This means that after the drop impacts the mosquito, both move together at the same speed.

By the law of conservation of energy, the sum of the individual kinetic energy of the raindrop and the mosquito must be equal before and after the collision.

Writting this as a formula:

K_{f} = K_{r} + K_{m}\\m_{f}.v_{f} = m_{r}.v_{r} + m_{m}.v_{m}

 

Where:

K_{f} = Final\:\:kinetic\:\:energy\\K_{r}  = Raindrop\:\:initial\:\:kinetic\:\:energy\\K_{m}  = Mosquito\:\:initial\:\:kinetic\:\:energy\\m_{f},v_{f} = Final\:\:mass\:\:and\:\:speed \\m_{r},v_{r} = Raindrop\:\:mass\:\:and\:\:initial\:\:speed \\m_{m},v_{m} = Mosquito\:\:mass\:\:and\:\:initial\:\:speed

And isolating v_{f}:

v_{f} = \frac{m_{r}.v_{r} + m_{m}.v_{m}}{m_{f}}\\v_{f} = \frac{m_{r}.v_{r} + m_{m}.v_{m}}{m_{r}+m_{m}}

Now, the problem states that the raindrop's speed is 8.1 m/s and its mass is 50 times greater than the mosquito's:

m_{m} = \frac{m_{r}}{50}

Replacing on the speed equation:

v_{f} = \frac{m_{r}*v_{r} + m_{m}*v_{m}}{m_{r}+m_{m}}\\v_{f} = \frac{m_{r}*8.1 + m_{m}*0}{m_{r}+\frac{m_{r}}{50}}\\v_{f} = \frac{m_{r}*8.1}{\frac{51}{50}*m_{r}}\\v_{f} = \frac{50*8.1}{51}\\v_{f} = 7.94 \frac{m}{s}

 

<u>PART B </u>

By definition, acceleration is the variation of speed by unit of time. In this case the mosquito initial state is hovering still (vertically), and reaching the previously calculated v_{f} speed in 8.0 miliseconds (0.008 s).

Writting this as a formula:

a = \frac{\Delta v}{\Delta t}\\a = \frac{v_{f}-v_{m}}{8*10^{-3}}\\a = \frac{7.94-0}{0.008}\\a = \frac{7.94}{0.008}\\a = 992,5 \frac{m}{s^{2}}

Knowing that 9.8 m/s^2 is equivalent to 1g acceleration:

a = 992,5 \frac{m}{s^{2}} = 101.2 g

seropon [69]1 year ago
5 0

Answer:

Part a)

v = 7.94 m/s

Part b)

a = 992.6 m/s^2

Explanation:

Part a)

As we know that we can use momentum conservation for this

so we will have

m_1v_1 = (m_1 + m_2)v

(50m)8.1 = (50m + m)v

v = 7.94 m/s

Part b)

As we know that acceleration is rate of change in velocity

so we have

a = \frac{v_f - v_i}{t}

so we have

a = \frac{7.94 - 0}{8 \times 10^{-3}}

a = 992.6 m/s^2

You might be interested in
A free-falling golf ball strikes the ground and exerts a force on it. Which sentences are true about this situation? A golf ball
Harlamova29_29 [7]

Answer:

The ground exerts an equal force on the golf ball

Explanation:

Third's Newton Law states that:

"When an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A".

In this problem, object A is the golf ball while object B is the ground, so we can say that:

- the golf ball exerts a force on the ground

- the ground exerts an equal and opposite force on the golf ball

8 0
1 year ago
Read 2 more answers
Find an expression for the acceleration a of the red block after it is released. use mr for the mass of the red block, mg for th
Drupady [299]

<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>

<span> </span>

6 0
1 year ago
Read 2 more answers
A boat moves through the sea.
sergiy2304 [10]

Answer:

dont you have to times it

Explanation:

4 0
2 years ago
You are sitting in your car at rest at a traffic light with a bicyclist at rest next to you in the adjoining bicycle lane. As so
grigory [225]

Answer:

Explanation:

Time duration during which acceleration exists in  bicycle =

23 / 12 = 1.91 s

Time duration during which acceleration exists in car

= 47 / 8 = 5.875 s

Distance covered by bicycle during acceleration ( t = 1.91 s )

= 1/2 x 12 x (1.91)²

= 21.88 mi

Distance covered by car during this time ( t = 1.91 s )

= 1/2 x 8 x (1.91)²

7.64 mi ,

velocity of car after 1.91 s

= 8 x 1.91 = 15.28 mi/h

Let after time 1.91 , time taken by them to meet each other be t

Total distance covered by cycle = total distance covered by car

21.88 + 23 t = 7.64 + 15.28t + 4 t²

21.88 = 7.64 - 7.72t +4 t²

4 t² -7.72 t -14.24 = 0

t = 2.83 s

Total time taken

= 2.83 + 1.91

= 4.74 s

So after 4.74 s they will meet each other.

b ) Maximum distance occurs when velocity of both of them becomes equal .

Velocity after 1.91 s of bicycle

12 x 1.91 = 23 mi/h

Velocity after 1.91 s of car

8 x 1.91 = 15.28 mi/h . Let after time t , the velocity of car becomes 23

15.28 + 8t = 23

t = .965 s

So after time .965 s , car has velocity equal to that of bicycle.

The bicycle will travel a distance of

= 21.88 + .965 x 23 = 44.075 mi

car will travel a distance of

7.64 + 15.28 x .965 + .5 x 8 x .965²

= 7.64 + 14.75 + 3.72

= 26.11 mi

Distance between car and bicycle

= 44.075 - 26.11 = 17.965 mi

= 17.965 x 1760

= 31618.4 ft.

5 0
1 year ago
A force of 20N changes the position of a body. If mass of the body is 2kg, find the acceleration produced in the body.2. A ball
shepuryov [24]

Explanation:

<em>Hello</em><em> </em><em>there</em><em>!</em><em>!</em><em>!</em>

<em>You</em><em> </em><em>just</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>use</em><em> </em><em>simple</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>force</em><em> </em><em>and</em><em> </em><em>momentum</em><em>, </em>

<em>F</em><em>=</em><em> </em><em>m.a</em>

<em>and</em><em> </em><em>momentum</em><em> </em><em>(</em><em>p</em><em>)</em><em>=</em><em> </em><em>m.v</em>

<em>where</em><em> </em><em>m</em><em>=</em><em> </em><em>mass</em>

<em>v</em><em>=</em><em> </em><em>velocity</em><em>.</em>

<em>a</em><em>=</em><em> </em><em>acceleration</em><em> </em><em>.</em>

<em>And</em><em> </em><em>the</em><em> </em><em>solutions</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>pictures</em><em>. </em>

<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>

5 0
2 years ago
Other questions:
  • Military specifications often call for electronic devices to be able to withstand accelerations of 10 g. to make sure that their
    9·1 answer
  • Why do most objects tend to contain nearly equal numbers of positive and negative charges?
    5·2 answers
  • To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
    7·1 answer
  • To withstand "g-forces" of up to 10 g's, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a "human ce
    5·1 answer
  • What is not a similarity between mars and earth today?
    15·1 answer
  • Shows the position-versus-time graph of a particle in SHM. Positive direction is the direction to the right.
    6·1 answer
  • UDAY WAS TOLD TO PUT SOME CONTAINERS IN ONE OF THE COLD STORES AT WORK. THE LABLES ON THE CONTAINERS READ STORE BELOW -5 C.THERE
    13·1 answer
  • A trumpet player on a moving railroad flatcar moves toward a second trumpet player standing alongside the track both play a 490
    5·1 answer
  • A large crate is at rest on a ramp at a loading dock
    12·1 answer
  • Two motorcycles travel along a straight road heading due north. At t = 0 motorcycle 1 is at x = 50 m and moves with a constant s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!