Answer: 2.76 g
Step-by-step explanation:
The formula to find the standard deviation:-

The given data values : 560 g, 562 g, 556 g, 558 g, 560 g, 556 g, 559 g, 561 g, 565 g, 563 g.
Then, 
Now, 
Then, 
Hence, the standard deviation of his measurements = 2.76 g
Answer:
a) Null and alternative hypotheses are:
: mu=183 days
: mu>183 days
b) If the true mean is 190 days, Type II error can be made.
Step-by-step explanation:
Let mu be the mean life of the batteries of the company when it is used in a wireless mouse
Null and alternative hypotheses are:
: mu=183 days
: mu>183 days
Type II error happens if we fail to reject the null hypothesis, when actually the alternative hypothesis is true.
That is if we conclude that mean life of the batteries of the company when it is used in a wireless mouse is at most 183 days, but actually mean life is 190 hours, we make a Type II error.
(a) Data with the eight day's measurement.
Raw data: [60,58,64,64,68,50,57,82],
Sorted data: [50,57,58,60,64,64,68,82]
Sample size = 8 (even)
mean = 62.875
median = (60+64)/2 = 62
1st quartile = (57+58)/2 = 57.5
3rd quartile = (64+68)/2 = 66
IQR = 66 - 57.5 = 8.5
(b) Data without the eight day's measurement.
Raw data: [60,58,64,64,68,50,57]
Sorted data: [50,57,58,60,64,64,68]
Sample size = 7 (odd)
mean = 60.143
median = 60
1st quartile = 57
3rd quartile = 64
IQR = 64 -57 = 7
Answers:
1. The average is the same with or without the 8th day's data. FALSE
2. The median is the same with or without the 8th day's data. FALSE
3. The IQR decreases when the 8th day is included. FALSE
4. The IQR increases when the 8th day is included. TRUE
5. The median is higher when the 8th day is included. TRUE
Answer:
17
Step-by-step explanation:
As 2 phones are defective from a group of 98 that were checked, you can determine a percentage:
2/98= 2%
This indicates that 2% of the phones are likely to be defective and because of that you can find 2% of 850:
850*2%= 17
According to this, 17 phones are likely to be defective.
Finding the slope of both coordinates, you'll get 15/2. The slopes are the same