answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
2 years ago
10

Approximate the Sun as a uniform sphere of radius 6.96 X 108 m, rotating about its central axis with a period of 25.4 days. Supp

ose that, at the end of its life, the Sun collapses inward to form a uniform dwarf star that is approximately the same size as Earth. Use the average radius of Earth in your calculations.
Part A
What will the period of the dwarf's rotation be?
T = ?
Physics
1 answer:
In-s [12.5K]2 years ago
8 0

Answer:

T = 184 seconds

Explanation:

First in order to solve this, we need to know which is the expression to calculate the period. This is an exercise of angular velocity, so:

T = 2π/w

Where w: angular speed (in rad/s)

So, let's calculate first the innitial angular speed:

w = 2π/T

Converting days to seconds:

25.4 days * 24 h/day * 3600 s/h = 2,194,560 s

Then the angular speed:

w = 2π / 2,194,560 = 2.863x10^-6 rad/s

Now, the innitial angular momentum is:

I = (2/5)Mr² replacing data:

I = 2/5* (6.96x10^8)² * M = 1.94x10^17m² * M

so the initial angular momentum would be:

L = Iω = 2.863x10^-6 * 1.94x10^17 M

L = 5.55x10^11 m²/s * M = final angular momentum

Now the  final I = 2/5Mr²

Final I = 2/5 * (6.37x10^6)² * M  = 1.62x10^13m² * M

Then 5.55x10^11m²/s * M = 1.62x10^13m² * M * ω → M cancels

ω = 3.42x10^-2 rad/s

Then the new period

T = 2π/ω = 2*3.14 / 3.42x10^-2

T = 184 seconds

You might be interested in
A heat engine (Power Cycle) with a thermal efficiency of 35 percent efficiency produces 750 kJ of work. Heat transfer to the eng
frosja888 [35]

Answer:

a) The schematic illustrating is attached

b) The heat transfer to the heat engine is 2142.86 kJ, the heat transfer from the heat engine is 1392.86 kJ

c) The heat transfer to the heat engine is 1648.35 kJ, the heat transfer from the heat engine is 898.35 kJ

Explanation:

b) The heat transfer to the engine and the heat transfer from the engine to the air is:

Q_{1} =\frac{W}{n}

Where

W = 750 kJ

n = 35% = 0.25

Replacing:

Q_{1} =\frac{750}{0.35} =2142.86kJ

Q_{2} =Q_{1} -W=2142.86-750=1392.86kJ

c) The efficiency of Carnot engine is:

n=1-\frac{300K}{550K} =0.455

The heat transfer to the heat engine is:

Q_{1c} =\frac{750}{0.455} =1648.35kJ

The heat transfer from the heat engine is:

Q_{2c} =1648.35-750=898.35kJ

4 0
2 years ago
Whale sharks swim forward while ascending or descending. They swim along a straight-line path at a shallow angle as they move fr
Aneli [31]
You did not include the quesetion, but I can help you to understand the problem and how to find the relevant information.

1) The angle of 13° with which the shark ascends meets this:

Vertical ascending velocity = 0.85m/s * sin(13°)

Horizontal velocity = 0.85m/s * cos(13°)

2) The length swan by the shark ascending meets this

Vertical ascending length = 50 m

Horizontal length, y:

\frac{y}{50} = \frac{0.85sin(13)}{0.85cos(13)}

From that y = 50 * tan(13°)

=> y = 11.54 m.

3) Conclusions:

1) The shark run 50 m vertically upward and 11.54 m horizontally.

2) The length of the path run by the shark may be calculated using Pythagoras' theorem:

hypotenuse^2 = (50m)^2 + (11.54m)^2 = 2633.25m^2

hypotenuse = 51.35m

So, the shark swan 51.35 m to reach the surface.

4 0
2 years ago
5. A nail contains trillions of electrons. Given that electrons repel from each other, why do they not then fly out of the nail?
diamong [38]

Answer:

Nails are made of iron. Iron consists of 26 protons and 26 electrons. protons are positively charged and electrons are negatively charged, so this force of attraction keeps the electrons together.

If electrons repel from each other, the positively charge protons and nucleus allow them to move in a definite orbit and prevent them flying out of the nail.

4 0
2 years ago
The magnetic field at the earth's surface can vary in response to solar activity. During one intense solar storm, the vertical c
Flauer [41]

Answer:

EMF = 33880 Volts

Explanation:

As per Faraday's law of Electromagnetic induction we know that

Rate of change in magnetic flux will induce EMF in the closed conducting loop

so we have

\phi = B.A

now we have

A = (110 \times 10^3)(110 \times 10^3)

A = 1.21 \times 10^{10}

now we have

\phi = B(1.21 \times 10^{10})

now the induced EMF through this loop is given as

EMF = (\frac{dB}{dt})(1.21 \times 10^{10})

EMF = (2.8 \times 10^{-6})(1.21 \times 10^{10})

EMF = 33880 Volts

5 0
2 years ago
A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high .
rjkz [21]

a) 2.64 s

We can solve this part of the problem by using the following SUVAT equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the stone

u is the initial velocity

t is the time

a is the acceleration

We must be careful to the signs of s, u and a. Taking upward as positive direction, we have:

- s (displacement) negative, since it is downward: so s = -75.0 m

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a= g = -9.8 m/s^2 (acceleration of gravity)

Substituting into the equation,

-75.0 = 15.5 t -4.9t^2\\4.9t^2-15.5t-75.0 = 0

Solving the equation, we have two solutions: t = -5.80 s and t = 2.84 s. Since the negative solution has no physical meaning, the stone reaches the bottom of the cliff 2.64 s later.

b) 10.4 m/s

The speed of the stone when it reaches the bottom of the cliff can be calculated by using the equation:

v=u+at

where again, we must be careful to the signs of the various quantities:

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a = g = -9.8 m/s^2

Substituting t = 2.64 s, we find the final velocity of the stone:

v = 15.5 +(-9.8)(2.64)=-10.4 m/s

where the negative sign means that the velocity is downward: so the speed is 10.4 m/s.

c) 4.11 s

In this case, we can use again the equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the package

u is the initial velocity

t is the time

a is the acceleration

We have:

s = -105 m (vertical displacement of the package, downward so negative)

u = +5.40 m/s (initial velocity of the package, which is the same as the helicopter, upward so positive)

a = g = -9.8 m/s^2

Substituting into the equation,

-105 = 5.40 t -4.9t^2\\4.9t^2 -5.40 t-105=0

Which gives two solutions: t = -5.21 s and t = 4.11 s. Again, we discard the first solution since it is negative, so the package reaches the ground after

t = 4.11 seconds.

5 0
2 years ago
Read 2 more answers
Other questions:
  • A spaceship is travelling at 20,000.0 m/s. After 5.0 seconds, the rocket thrusters are turned on. At the 55.0 second mark, the s
    9·1 answer
  • Lamar writes several equations trying to better understand potential energy. H = d with an arrow to the equation W = F d and P E
    11·2 answers
  • The second law of thermodynamics imposes what limit on the efficiency of a heat engine? The second law of thermodynamics imposes
    5·1 answer
  • Sophia is planning on going down an 8-m water slide. Her weight is 50 N. She knows that she has gravitational potential energy (
    9·1 answer
  • In Hooke's law, Fspring=kΔx , what does the Fspring stand for?
    8·2 answers
  • A hiker walks due east for a distance of 25.5 km from her base camp. On the second day, she walks 41.0 km northwest till she dis
    7·1 answer
  • An 80.0-kg man jumps from a height of 2.50 m onto a platform mounted on springs. As the springs compress, he pushes the platform
    10·1 answer
  • A box of mass M is pushed a distance Δ x across a level floor by a constant applied force F . The coefficient of kinetic frictio
    12·1 answer
  • When Lucy saw a shark, a limbic system structure known as the _____ became activated and enabled her to rapidly respond to the t
    15·1 answer
  • If you pull a resistant puppy with its leash in a horizontal direction, it takes 80 N to get it going. You can then keep it movi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!