answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
2 years ago
12

Water has the following thermodynamic values: ΔH°fus of H2O = 6.02 kJ/mol ΔH°vap of H2O = 40.7 kJ/mol heat capacity of solid H2O

= 2.09 J/g°C heat capacity of liquid H2O = 4.18 J/g°C heat capacity of gaseous H2O = 1.97 J/g°C
How much energy (in kJ) is required to raise the temperature of 25.0 g of H2O from -129°C to 262°C?
Enter your answer in units of kJ to three significant figures.
Chemistry
1 answer:
Brrunno [24]2 years ago
8 0

Answer:

Qtotal = 90.004 kJ

Explanation:

To start resolving the problem we need to first convert the kJ/mol units from the thermodynamic values to J/g, so that we can work with the units of the heat capacity values. We know that the molar mass of water is 18.015 g/mol, so with this we do the respective conversion:

ΔH°fus of H2O = (6.02 kJ/mol) (1 mol/18.015g) (1000J/kJ) = 334.165 J/g

ΔH°vap of H2O = (40.7 kJ/mol) (1mol/18.015g) (1000J/kJ) = 2259.228 J/g

Now we need to find out the heat energy required to rise the temperature (specific heat capacity) and the energy required for each change of phase (specific latent heat), and add everything up. For this we will require the specific heat capacity and latent heat equations:

Q = mCΔT ; where m = mass, C = Hear capacity, ΔT = change of temperature

Q = mL ; where m = mass, L = specific latent heat

<u />

<u>First change of phase (solid to liquid - fusion)</u>

Q1 = (25g) (2.09 J/g°C) (0°C - (-129°C) = 6740.25 J

Q2 = (25g) (334.165 J/g) = 8354.125 J

<u>Second change of phase (liquid to gas - vaporization)</u>

Q3 = (25g) (4.18 J/g°C) (100°C - 0°C = 10450 J

Q4 = (25g) (2259.228 J/g) = 56480.7 J

<u>Rise of temperature of the gaseous water</u>

Q5 = (25g) (1.97 J/g°C) (262°C - 100°C = 7978.5 J

Finally we add everything up:

Qtotal = Q1 + Q2 + Q3 + Q4 + Q5 = 6740.25 J + 8354.125 J + 10450 J + 56480.7 J + 7978.5 J = 90003.575 J = 90.004 kJ

You might be interested in
Adhesion describes water's attraction to _____. other water molecules other substances hydrogen molecules acids and bases
Yuliya22 [10]
Adhesion describes water's attraction to other substances. 

The term Adhesion refers to the tendency of particles or surfaces which are not similar to cling to one another. So basically, the adhesion occurs in water when the water is attracted or cling to other substance not similar to water.
4 0
2 years ago
Read 2 more answers
Ammonia gas is compressed from 21°C and 200 kPa to 1000 kPa in an adiabatic compressor with an efficiency of 0.82. Estimate the
Evgen [1.6K]

Explanation:

It is known that efficiency is denoted by \eta.

The given data is as follows.

     \eta = 0.82,       T_{1} = (21 + 273) K = 294 K

     P_{1} = 200 kPa,     P_{2} = 1000 kPa

Therefore, calculate the final temperature as follows.

         \eta = \frac{T_{2} - T_{1}}{T_{2}}    

         0.82 = \frac{T_{2} - 294 K}{T_{2}}    

          T_{2} = 1633 K

Final temperature in degree celsius = (1633 - 273)^{o}C

                                                            = 1360^{o}C

Now, we will calculate the entropy as follows.

       \Delta S = nC_{v} ln \frac{T_{2}}{T_{1}} + nR ln \frac{P_{1}}{P_{2}}

For 1 mole,  \Delta S = C_{v} ln \frac{T_{2}}{T_{1}} + R ln \frac{P_{1}}{P_{2}}

It is known that for NH_{3} the value of C_{v} = 0.028 kJ/mol.

Therefore, putting the given values into the above formula as follows.

     \Delta S = C_{v} ln \frac{T_{2}}{T_{1}} + R ln \frac{P_{1}}{P_{2}}

                = 0.028 kJ/mol \times ln \frac{1633}{294} + 8.314 \times 10^{-3} kJ \times ln \frac{200}{1000}

                = 0.0346 kJ/mol

or,             = 34.6 J/mol             (as 1 kJ = 1000 J)

Therefore, entropy change of ammonia is 34.6 J/mol.

3 0
2 years ago
A sample of an ideal gas occupies 2.78 x 10^3 mL at 25°C and 760 mm Hg.
iris [78.8K]

Answer: It will occupy 4.45\times 10^3ml at the same temperature and 475 mm Hg.

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

P\propto \frac{1}{V}     (At constant temperature and number of moles)

P_1V_1=P_2V_2    (At constant temperature and number of moles)

where,

P_1 = initial pressure of gas = 760 mm Hg

P_2 = final pressure of gas = 475 mm Hg

V_1 = initial volume of gas = 2.78\times 10^3ml

V_2  = final volume of gas = ?

Putting in the values:

760mm Hg\times 2.78\times 10^3ml=475 mm Hg\times V_2

V_2=4.45\times 10^3ml

Thus it will occupy 4.45\times 10^3ml at the same temperature and 475 mm Hg

5 0
2 years ago
Read 2 more answers
An air sample consists of oxygen and nitrogen gas as major components. It also contains carbon dioxide and traces of some rare g
jekas [21]

Explanation:

A mixture is defined as the substance that contains two or more different number of substances that are physically mixed together.

For example, a mixture of air which contains oxygen, nitrogen and other gases.

A mixture in which solute particles are unevenly distributed into the solvent then it is known as a heterogeneous mixture.

For example, sand in water is a heterogeneous mixture.

A homogeneous mixture is defined as the mixture in which solute particles are evenly distributed in a solvent.

A homogeneous mixture is a clear solution.

For example, salt dissolved in water is a homogeneous mixture.

A solution is defined as the substance in which two or more substances are mixed together.

A compound is defined as the substance that contains two or more different elements that chemically combined together in a fixed ratio by mass.

A element is defined as the substance that contains only one type of atoms.

For example, a piece of sodium element will contain only atoms of sodium.

Whereas a pure substance is defined as the substance which contains only one type of molecule or one type of atom.

For example, O_{2}, N_{2} etc are pure substances.

Thus, we can conclude that the terms which could be used to describe the given sample of air is as follows.

  • pure chemical substance.
  • heterogenous mixture.
  • mixture.
4 0
2 years ago
What is the overall balanced equation for the precipitation reaction occurring between silver nitrate and calcium bromide? hints
aleksklad [387]
The answer:

<span>the overall balanced equation for the precipitation reaction occurring between silver nitrate and calcium bromide:
</span>CaBr2 + AgNO3-----------> AgBr2 + CaNO3, so among the given choices, the
true answe is 
<span>agno3(aq)+cabr2(aq) (as reactants)</span>
4 0
2 years ago
Other questions:
  • A compound contains 69.94 percent iron and 30.06 percent oxygen. What is its molecular formula if the molar mass of the compound
    15·2 answers
  • Write one scientific question about the organism in the photo
    8·2 answers
  • A person is pushing a box across a table. The measured forces on the box are 10N, 14N, 7N, 10N. Which force is represented by 7N
    11·2 answers
  • What is the maximum number of grams of ammonia, nh3, which can be obtained from the reaction of 10.0 g of h2 and 80.0 g of n2? n
    8·1 answer
  • How many molecules of CBr4 are in 250 grams of CBr4
    7·1 answer
  • Using the periodic table, complete the table to describe each atom. Type in your answers.
    6·2 answers
  • You have a 1.153 g sample of an unknown solid acid, HA, dissolved in enough water to make 20.00 mL of solution. HA reacts with K
    7·1 answer
  • A proton transfer reaction can occur when an aldehyde is placed in strong base, such as an alkoxide ion, producing an alcohol an
    11·1 answer
  • A race car is driven by a professional driver at 99 . What is this speed in and ? 1 mile = 1.61 kilometers 1 hour = 60 minutes E
    10·1 answer
  • Why is the atomic mass of iron, 55.845 amu, most similar to the mass of iron-56, yet less than 56 amu? The atomic mass is the si
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!