Answer:
The acceleration of the cheetahs is 10.1 m/s²
Explanation:
Hi there!
The equation of velocity of an object moving along a straight line with constant acceleration is the following:
v = v0 + a · t
Where:
v = velocity of the object at time t.
v0 = initial velocity.
a = acceleration.
t = time
We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.
Let's convert mi/h into m/s:
50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s
Then, using the equation:
v = v0 + a · t
22.4 m/s = 0 m/s + a · 2.22 s
Solving for a:
22.4 m/s / 2.22 s = a
a = 10.1 m/s²
The acceleration of the cheetahs is 10.1 m/s²
Answer:
h = 2 R (1 +μ)
Explanation:
This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the
let's use the mechanical energy conservation agreement
starting point. Lower, just at the curl
Em₀ = K = ½ m v₁²
final point. Highest point of the curl
= U = m g y
Find the height y = 2R
Em₀ = Em_{f}
½ m v₁² = m g 2R
v₁ = √ 4 gR
Any speed greater than this the body remains in the loop.
In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law
X axis
-fr = m a (1)
Y Axis
N - W = 0
N = mg
the friction force has the formula
fr = μ N
fr = μ m g
we substitute 1
- μ mg = m a
a = - μ g
having the acceleration, we can use the kinematic relations
v² = v₀² - 2 a x
v₀² = v² + 2 a x
the length of this zone is x = 2R
let's calculate
v₀ = √ (4 gR + 2 μ g 2R)
v₀ = √4gR( 1 + μ)
this is the speed so you must reach the area with fricticon
finally have the third part we use energy conservation
starting point. Highest on the ramp without rubbing
Em₀ = U = m g h
final point. Just before reaching the area with rubbing
= K = ½ m v₀²
Em₀ = Em_{f}
mgh = ½ m 4gR(1 + μ)
h = ½ 4R (1+ μ)
h = 2 R (1 +μ)
Answer:
x2 = 64 revolutions.
it rotate through 64 revolutions in the next 5.00 s
Explanation:
Given;
wheel rotates from rest with constant angular acceleration.
Initial angular speed v = 0
Time t = 2.50
Distance x = 8 rev
Applying equation of motion;
x = vt +0.5at^2 ........1
Since v = 0
x = 0.5at^2
making a the subject of formula;
a = x/0.5t^2 = 2x/t^2
a = angular acceleration
t = time taken
x = angular distance
Substituting the values;
a = 2(8)/2.5^2
a = 2.56 rev/s^2
velocity at t = 2.50
v1 = a×t = 2.56×2.50 = 6.4 rev/s
Through the next 5 second;
t2 = 5 seconds
a2 = 2.56 rev/s^2
v2 = 6.4 rev/s
From equation 1;
x = vt +0.5at^2
Substituting the values;
x2 = 6.4(5) + 0.5×2.56×5^2
x2 = 64 revolutions.
it rotate through 64 revolutions in the next 5.00 s
At a point on the streamline, Bernoulli's equation is
p/ρ + v²/(2g) = constant
where
p = pressure
v = velocity
ρ = density of air, 0.075 lb/ft³ (standard conditions)
g = 32 ft/s²
Point 1:
p₁ = 2.0 lb/in² = 2*144 = 288 lb/ft²
v₁ = 150 ft/s
Point 2 (stagnation):
At the stagnation point, the velocity is zero.
The density remains constant.
Let p₂ = pressure at the stagnation point.
Then,
p₂ = ρ(p₁/ρ + v₁²/(2g))
p₂ = (288 lb/ft²) + [(0.075 lb/ft³)*(150 ft/s)²]/[2*(32 ft/s²)
= 314.37 lb/ft²
= 314.37/144 = 2.18 lb/in²
Answer: 2.2 psi