Answer:
a. pka = 3,73.
b. pkb = 10,27.
Explanation:
a. Supposing the chemical formula of X-281 is HX, the dissociation in water is:
HX + H₂O ⇄ H₃O⁺ + X⁻
Where ka is defined as:
![ka = \frac{[H_3O^+][X^-]}{[HX]}](https://tex.z-dn.net/?f=ka%20%3D%20%5Cfrac%7B%5BH_3O%5E%2B%5D%5BX%5E-%5D%7D%7B%5BHX%5D%7D)
In equilibrium, molar concentrations are:
[HX] = 0,089M - x
[H₃O⁺] = x
[X⁻] = x
pH is defined as -log[H₃O⁺]], thus, [H₃O⁺] is:
![[H_3O^+]} = 10^{-2,40}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%7D%20%3D%2010%5E%7B-2%2C40%7D)
[H₃O⁺] = <em>0,004M</em>
Thus:
[X⁻] = 0,004M
And:
[HX] = 0,089M - 0,004M = <em>0,085M</em>
![ka = \frac{[0,004][0,004]}{[0,085]}](https://tex.z-dn.net/?f=ka%20%3D%20%5Cfrac%7B%5B0%2C004%5D%5B0%2C004%5D%7D%7B%5B0%2C085%5D%7D)
ka = 1,88x10⁻⁴
And <em>pka = 3,73</em>
b. As pka + pkb = 14,00
pkb = 14,00 - 3,73
<em>pkb = 10,27</em>
I hope it helps!
There are many types of acid or bases. Based on the Bronsted-Lowry definition,
* A Bronsted-Lowry acid is a proton donor
* A Bronsted-Lowry base is a proton acceptor
Take this reaction for example:
HCl(aq)+ N<span>H</span>₃(aq)→N<span>H</span>⁴⁺(aq)+C<span>l</span>⁻(aq<span>)
</span>
HCl donates a proton, so it is a Bronsted-Lowry acid. Consequently, ammonia accepts this proton, so it is the Bronsted-Lowry base.
<span>Answer:
.01 moles of D to .005 moles of L ~ so, .01+.005 = .015 total; using this total value, divide the portions of D and L.
so .01/.015 to .005/.015 ~ 67% D to 33% L.
And thus, the enantiomer excess will be 34%.</span>
Explanation:
The dimensions of a standard backpack is 30cm x 30cm x 40cm
The mass of an average student is 70 kg
We know that, the density of gold is 19.3 g/cm³.
Let m be the mass of the backpack. So,

An average student has a mass of 70 kg. If we compare the mass of student and mass of backpack, we find that the backpack is 10 times of the mass of the student.