Answer:
Shift 2 unit left
Flip the graph about y-axis
Stretch horizontally by factor 2
Shift vertically up by 2 units
Step-by-step explanation:
Given:
Parent function: 
Transformation function: 
Take -2 common from transform function f(x)
![f(x)=\log[-2(x+2)]+2](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D%2B2)
Now we see the step-by-step translation

Shift 2 unit left ( x → x+2 )

Flip the graph about y-axis ( (x+2) → - (x+2) )
![f(x)=\log[-(x+2)]](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-%28x%2B2%29%5D)
Stretch horizontally by factor 2 [ -x(x+2) → -2(x+2) ]
![f(x)=\log[-2(x+2)]](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D)
Shift vertically up by 2 units [ f(x) → f(x) + 2 ]
![f(x)=\log[-2(x+2)]+2](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D%2B2)
Simplify the function:

Hence, Using four step of transformation to get new function 
F(x)=x2−x−1f, left parenthesis, x, right parenthesis, equals, x, squared, minus, x, minus, 1 What is the average rate of change
Alexandra [31]
Answer: The average rate of change = -1
Step-by-step explanation: Please find the attached file for the solution
Well you are look at a 3d image here
so if area is length times width then we need to find the area of every side of the cabinet and add it up
11/3 on the calculator is 3.66666667 sooooo....
top: 3 x 11/3 = 11
side 1: 3 x 6 = 18
side 2: 3 x 6 = 18
front: 6 x 11/3 = 22
back: 6 x 11/3 = 22
so we have all of our measurements:)
now we just add them up together.
11+18+18+22+22= 91!!
so Frans would have to paint 91 square inches of that cabinet:) hope i helped
Answer:
The sample consisting of 64 data values would give a greater precision.
Step-by-step explanation:
The width of a (1 - <em>α</em>)% confidence interval for population mean μ is:

So, from the formula of the width of the interval it is clear that the width is inversely proportion to the sample size (<em>n</em>).
That is, as the sample size increases the interval width would decrease and as the sample size decreases the interval width would increase.
Here it is provided that two different samples will be taken from the same population of test scores and a 95% confidence interval will be constructed for each sample to estimate the population mean.
The two sample sizes are:
<em>n</em>₁ = 25
<em>n</em>₂ = 64
The 95% confidence interval constructed using the sample of 64 values will have a smaller width than the the one constructed using the sample of 25 values.
Width for n = 25:
Width for n = 64:
![\text{Width}=2\cdot z_{\alpha/2}\cdot \frac{\sigma}{\sqrt{64}}=\frac{1}{8}\cdot [2\cdot z_{\alpha/2}\cdot \sigma]](https://tex.z-dn.net/?f=%5Ctext%7BWidth%7D%3D2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7B64%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Ccdot%20%5B2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Csigma%5D)
Thus, the sample consisting of 64 data values would give a greater precision
The two closest integers that 300 sqrt is 17 and 18