The variables are the row and column labels (except "total"). The appropriate choice is
... period number and study group number
For this case we have the following expression:

From here, we must clear the value of a.
We then have the following steps:
Place the terms that depend on a on the same side of the equation:

Do common factor "a":

Clear the value of "a" by dividing the factor within the parenthesis:

Answer:
The clear expression for "a" is given by:

We let x and y be the measures of the sides of the
rectangular garden. The perimeter subtracted with the other side should be
equal to 92.
<span> 2x + y = 92</span>
The value of y in terms of x is equal to,
<span> y =
92 – 2x</span>
The area is the product of the two sides,
<span>
A
= xy</span>
Substituting,
<span> A
= x (92 – 2x) = 92x – 2x2</span>
Solving for the derivative and equating to zero,
<span> 0
= 92 – 4x ; x = 23</span>
Therefore, the area of the garden is,
<span> A
= 23(92 – 2(23)) = 1058 yard<span>2</span></span>
Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
µ = 17
For the alternative hypothesis,
µ < 17
This is a left tailed test.
Since the population standard deviation is not given, the distribution is a student's t.
Since n = 80,
Degrees of freedom, df = n - 1 = 80 - 1 = 79
t = (x - µ)/(s/√n)
Where
x = sample mean = 15.6
µ = population mean = 17
s = samples standard deviation = 4.5
t = (15.6 - 17)/(4.5/√80) = - 2.78
We would determine the p value using the t test calculator. It becomes
p = 0.0034
Since alpha, 0.05 > than the p value, 0.0043, then we would reject the null hypothesis.
The data supports the professor’s claim. The average number of hours per week spent studying for students at her college is less than 17 hours per week.