answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sliva [168]
2 years ago
8

If a(x) = 3x + 1 and b (x) = StartRoot x minus 4 EndRoot, what is the domain of (b circle a) (x)?

Mathematics
2 answers:
Tatiana [17]2 years ago
6 0

Answer:

C.

Step-by-step explanation:

kiruha [24]2 years ago
4 0

Answer:

[1,\infty)

Step-by-step explanation:

b(x)=\sqrt{x-4}

a(x)=3x+1

Since we want to know the domain of (b \circ a)(x), let's first consider the domain of the inside function, that is, that of a(x)=3x+1. Every polynomial function has domain all real numbers.

So we can plug anything for function a and get a number back.

Now the other function is going to be worrisome because it has a square root. You cannot take square root of negative numbers if you are only considering real numbers which that is the case with most texts.

Let's find (b \circ a)(x) and simplify now.

(b \circ a)(x)

b(a(x))

b(3x+1)

\sqrt{(3x+1)-4}

\sqrt{3x+1-4}

\sqrt{3x-3}

Now again we can only square root positive or zero numbers so we want 3x-3 \ge 0.

Let's solve this to find the domain of (b \circ a)(x).

3x-3 \ge 0

Add 3 on both sides:

3x \ge 3

Divide both sides by 3:

x \ge 1

So we want x to be a number greater than or equal to 1.

The option that says this is [1,\infty)

-------------------------------

Give an example why option A fails:

A number in the given set is -2.

a(x)=3x+1

b(x)=\sqrt{x-4}

So a(-2)=3(-2)+1=-6+1=-5 and b(-5)=\sqrt{-5-4}=\sqrt{-9} \text{ which is not real}.

Give an example why option B fails:

A number in the given set is 0.

a(x)=3x+1

b(x)=\sqrt{x-4}

So a(0)=3(0)+1=0+1=1 and b(1)=\sqrt{1-4}=\sqrt{-3} \text{ which is not real}.

Give an example why option D fails:

While all the numbers in set D work, there are more numbers outside that range of numbers that also work.

A number not in the given set that works is 3.

a(x)=3x+1

b(x)=\sqrt{x-4}

So a(3)=3(3)+1=9+1=10 and b(1)=\sqrt{10-4}=\sqrt{6} \text{ which is real}.

You might be interested in
You work on a concrete crew starting a construction project. Once the pouring begins, it must continue non-stop until it is comp
Gala2k [10]

Answer: B. 6

Step-by-step explanation:

8 0
2 years ago
What does the digit 7 represent in 170,280?
Sidana [21]

Answer:

that is the ten thousands place

Step-by-step explanation:

3 0
2 years ago
There are 11 portable mini suites (a.k.a. cages) in a row at the Paws and Claws Holiday Pet Resort. They are neatly labeled with
BigorU [14]

Step-by-step explanation:

a) 7!

If there are no restrictions, answer is 7! as it is the permutation of all animals.

b) 4! x 3!

As cats are 6 and Dogs are 5, thus 1st and last must be cats in order to have alternate arrangements. Therefore the only choices are the order of the cats among  themselves and the order of the dogs among themselves. There are 4! permutations of the cats and 3! permutations of the dogs, so there are a total of 4! x 3! possible arrangements of the suites.

c) 3! x 5!

There are 3! possible arrangements of  the dogs among themselves. Now, if we consider the dogs as  one ”object” together, then we can think of arranging the 4 cats  together with this 1 additional object. There are 5! such arrangements possible, so there are a total of 3! · 5! possible arrangements of the suites.

d) 2 x 4! x 3!

As required that all the cats must be together and all the dogs must be together, either the cats are all  before the dogs or the dogs are all before the cats. There are two possible arrangements thus two times of both possibilities is the answer i.e.  2 x 4! x 3!

3 0
2 years ago
Machines A and B always operate independently and at their respective constant rates. When working alone, Machine A can fill a p
pychu [463]

Answer:

The value of x is \frac{10}{3} hours.

Step-by-step explanation:

Machine A = 5 hours

Machine B = x hours

Machine A and B = 2 hours

Using the formula: \frac{T}{A}  + \frac{T}{B} = 1

where:

T is the time spend by both machine

A is the time spend by machine A

B is the time spend by machine B

\frac{2}{5}  + \frac{2}{x}  = 1

Let multiply the entire problem by the common denominator (5B)

5x(\frac{2}{5}  + \frac{2}{x} = 1)

2x + 10 = 5x

Collect the like terms

10 = 5x - 2x

10 = 3x

3x = 10

Divide both side by the coefficient of x (3)

\frac{3x}{3}  = \frac{10}{3}

x = \frac{10}{3} hours.

Therefore, Machine B will fill the same lot in \frac{10}{3} hours.

7 0
2 years ago
A piece of paper is to display ~128~ 128 space, 128, space square inches of text. If there are to be one-inch margins on both si
Grace [21]

Answer:

The dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches

Step-by-step explanation:

We have that:

Area = 128

Let the dimension of the paper be x and y;

Such that:

Length = x

Width = y

So:

Area = x * y

Substitute 128 for Area

128 = x * y

Make x the subject

x = \frac{128}{y}

When 1 inch margin is at top and bottom

The length becomes:

Length = x + 1 + 1

Length = x + 2

When 2 inch margin is at both sides

The width becomes:

Width = y + 2 + 2

Width = y + 4

The New Area (A) is then calculated as:

A = (x + 2) * (y + 4)

Substitute \frac{128}{y} for x

A = (\frac{128}{y} + 2) * (y + 4)

Open Brackets

A = 128 + \frac{512}{y} + 2y + 8

Collect Like Terms

A = \frac{512}{y} + 2y + 8+128

A = \frac{512}{y} + 2y + 136

A= 512y^{-1} + 2y + 136

To calculate the smallest possible value of y, we have to apply calculus.

Different A with respect to y

A' = -512y^{-2} + 2

Set

A' = 0

This gives:

0 = -512y^{-2} + 2

Collect Like Terms

512y^{-2} = 2

Multiply through by y^2

y^2 * 512y^{-2} = 2 * y^2

512 = 2y^2

Divide through by 2

256=y^2

Take square roots of both sides

\sqrt{256=y^2

16=y

y = 16

Recall that:

x = \frac{128}{y}

x = \frac{128}{16}

x = 8

Recall that the new dimensions are:

Length = x + 2

Width = y + 4

So:

Length = 8 + 2

Length = 10

Width = 16 + 4

Width = 20

To double-check;

Differentiate A'

A' = -512y^{-2} + 2

A" = -2 * -512y^{-3}

A" = 1024y^{-3}

A" = \frac{1024}{y^3}

The above value is:

A" = \frac{1024}{y^3} > 0

This means that the calculated values are at minimum.

<em>Hence, the dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches</em>

3 0
1 year ago
Other questions:
  • An airline has 83% of its flights depart on schedule. It has 68% of its flight depart and arrive on schedule. Find the probabili
    8·2 answers
  • What is the appropriate metric unit for measuring the capacity of a water cooler?
    7·2 answers
  • 20,880 times 2/5 worked out
    15·2 answers
  • Suppose that a class contains 15 boys and 30 girls, and that 10 students are to be selected at random for a special assignment.
    5·1 answer
  • The results of an election are shown in the table below.
    12·1 answer
  • Marcelo had $49.13 in his bank account. He paid two fees of $32.50 each, and then he made two deposits of $74.25 each. Write an
    8·2 answers
  • Tina is bored, very bored. She has decided there is no time like the present to take up a new hobby, paper football creation and
    12·2 answers
  • Use the fact that d = rt to write the system of equations that represents the scenario. Let x be the speed of Aro's paddling and
    7·1 answer
  • Casey is deciding which of two landscapers to hire. Each landscaper charges an hourly rate plus a fee for each job. Casey correc
    14·2 answers
  • Durante un mes, María gastó $ 455.50 en pasajes y Fabián 7.5 veces esa cantidad. En total, ¿cuántogastó Fabián en pasajes?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!