To solve this problem, we need to know that
arc length = r θ where θ is the central angle in radians.
We're given
r = 6 (units)
length of minor arc AB = 4pi
so we need to calculate the central angle, θ
Rearrange equation at the beginning,
θ = (arc length) / r = 4pi / 6 = 2pi /3
Answer: the central angle is 2pi/3 radians, or (2pi/3)*(180/pi) degrees = 120 degrees
We have to write an equation that uses this info so we can find the cost to ship that package. However, the package weight is given to us in grams and we need it in ounces. So first thing we are going to do is convert that 224 g to ounces. Use the fact that 1 g = .035274 ounces to convert.
. Do the multiplication and cancel out the label of grams and we have 7.901376 ounces. Ok. We know that it costs .57 to mail the package for the first ounce. We have almost 8 ounces. So no matter what, we are paying .57. For each additional ounce we are paying .32. The number of .32's we have to spend depends upon how much the package goes over the first ounce. For the first ounce we pay .57, then for the remaining 6.901376 ounces we pay .32 per ounce. Our equation looks like this: C(x) = .32(6.901376) + .57 and we need to solve for the cost, C(x). Doing the multiplication we find that it would cost $2.78 to ship that package.
Answer:
Present Value = $1666666.67
Step-by-step explanation:
Present Value of a Growing Perpuity is calculated using the following formula
PV =D/(r - g)
Where D = Dividend
r = Discount Rate
g = Growth rate
D = $50,000
r = 7%
r = 7/100
r = 0.07
g = 4%
g = 4/100
g = 0.04
PV = D/(r-g)
Becomes
PV = $50,000/(0.07-0.04)
PV = $50,000/0.03
PV = $1,666,666.67
So the Present Value of the perpuity is $1,666,666.67
Answer:
168 adult tickets
Step-by-step explanation:
3.75(82) (82 students)
307.5
2071.5 - 307.5 ( you subtract since you only need to know the number of adults)
1764
1764/10.5 (you divide since each adult is 10.5$)
168
1) You included neihter what Ramesh says nor the statements, then I can you tell some facts about the pattern.
2) The sequence is: 2401, 343, 49, 7, and 1.
3) The first term is 2401
4) The sequence is a decreasing geometric one.
5) The ratio is found dividing two consecutive terms (the second by the first, or the third by the second, or the fourth by the third, or the fifth by fourth):
1/7 = 7 / 49 = 49 / 343 = 343 / 2401.
So, the ratio is 1/7
6) The sum of that sequence is 2401 + 343 + 49 + 7 + 1 = 2801