Answer:
The probability that the pirate misses the captain's ship but the captain hits = 0.514
Step-by-step explanation:
Let A be the event that the captain hits the pirate ship
The probability of the captain hitting the pirate ship, P(A) = 3/5
Let B be the event that the pirate hits the captain's ship
The probability of the pirate hitting the captain's ship P(B) = 1/7
The probability of the pirate missing the captain's ship, P'(B) = 1 - P(B)
P'(B) = 1 - 1/7 = 6/7
The probability that the pirate misses the captain's ship but the captain hits = P(A) * P(B) = 3/5 * 6/7
= 0.514
The Given Sequence is an Arithmetic Sequence with First term = -19
⇒ a = -19
Second term is -13
We know that Common difference is Difference of second term and first term.
⇒ Common Difference (d) = -13 + 19 = 6
We know that Sum of n terms is given by : 
Given n = 63 and we found a = -19 and d = 6






The Sum of First 63 terms is 10521
X + x + 10 + 2x - 16
x = mia's score
x + 10 = erick's score
2x - 16 = isabelle's score
the entire expression is the sum of all 3 scores <==
Answer:
The value of x that gives the maximum transmission is 1/√e ≅0.607
Step-by-step explanation:
Lets call f the rate function f. Note that f(x) = k * x^2ln(1/x), where k is a positive constant (this is because f is proportional to the other expression). In order to compute the maximum of f in (0,1), we derivate f, using the product rule.

We need to equalize f' to 0
- k*(2x ln(1/x) - x) = 0 -------- We send k dividing to the other side
- 2x ln(1/x) - x = 0 -------- Now we take the x and move it to the other side
- 2x ln(1/x) = x -- Now, we send 2x dividing (note that x>0, so we can divide)
- ln(1/x) = x/2x = 1/2 ------- we send the natural logarithm as exp
- 1/x = e^(1/2)
- x = 1/e^(1/2) = 1/√e ≅ 0.607
Thus, the value of x that gives the maximum transmission is 1/√e.