<span>Red blood cells normally have a biconcave shape (picture a donut, but instead of a hole through the centre there's just a downward slope to the centre of the cell). If the cell takes on water, it will increase in size and the sloped areas will start to flatten out. If the cell loses water, it will begin to shrivel. Use these observations and your understanding of osmosis to answer the question!</span>
Can you show the picture of the question please?
Answer:
When the level of release of carbon dioxide during respiration and use of carbon dioxide during photosynthesis this results in a compensation point. At compensation point the net available carbon dioxide to phototrophs becomes zero. As, carbon dioxide is the chief ingredient for photosynthetic products like glucose and oxygen. These products are used up during the process of respiration. When the rates of two processes photosynthesis and respiration becomes equal. Phototrophic organisms will not be able to compensate for lack of carbon dioxide levels. Phototrophs will not be able to produce their food in the form of glucose and hence will not be able to respire too. This will result in lack of overall available food from phototrophs and lack of available oxygen for respiration. This will result in decline of organisms on earth.
No, cells are very complex. They are composed of highly specialized organelles that each have different functions.
I think the correct answer is ions.
An action potential occurs when a neuron sends information down an axon, away from the cell body. A neuron that emits an action potential, or nerve impulse is said to fire. These action potentials are generated by special types of voltage hated ion channels that are embedded in the plasma membrane of the cell.