Answer:
1.625 kilograms
Step-by-step explanation:
Since total weight of pears and apples is 6.5 kilograms and 3/4 of this weight is pears, the weight of the pears is
→ 6.5 x 3/4 = 4.875 kilograms
Since the weight of the pears is 4.875, we can subtract it from the total weight to find the weight of the apples
→ 6.5 - 4.875 = 1.625 kilograms
Answer:
2h x (l+b)
2x10 X (12+10)
20 X 22
44 cm cube is your answer...
30 flower pots times 10 seeds in each equals 300 seeds
The firts thig we are going to do is create tow triangles using the angles of elevation of Paul and Jose. Since the problem is not giving us their height we'll assume that the horizontal line of sight of both of them coincide with the base of the tree.
We know that Paul is 19m from the base of the tree and its elevation angle to the top of the tree is 59°. We also know that the elevation angle of Jose and the top of the tree is 43°, but we don't know the distance between Paul of Jose, so lets label that distance as

.
Now we can build a right triangle between Paul and the tree and another one between Jose and the tree as shown in the figure. Lets use cosine to find h in Paul's trianlge:



Now we can use the law of sines to find the distance

between Paul and Jose:



Now that we know the distance between Paul and Jose, the only thing left is add that distance to the distance from Paul and the base of the tree:

We can conclude that Jose is 33.9m from the base of the tree.
Answer:
d. can be equal to the value of the coefficient of determination (r2).
True on the special case when r =1 we have that 
Step-by-step explanation:
We need to remember that the correlation coefficient is a measure to analyze the goodness of fit for a model and is given by:
The determination coefficient is given by 
Let's analyze one by one the possible options:
a. can never be equal to the value of the coefficient of determination (r2).
False if r = 1 then 
b. is always larger than the value of the coefficient of determination (r2).
False not always if r= 1 we have that
and we don't satisfy the condition
c. is always smaller than the value of the coefficient of determination (r2).
False again if r =1 then we have
and we don't satisfy the condition
d. can be equal to the value of the coefficient of determination (r2).
True on the special case when r =1 we have that 