v=gt,
Initial value when time t=0, v=g*0=0.
t=0 s, v=0 m/s means that object’s initial velocity 0 m/s.
v=gt, and g is a constant g=9.8 m/s². We can write v=9.8*t.
Rate of change 9.8 means the acceleration due to gravity is 9.8 m/s².
Answer: C. The initial value is 0. That means that object’s initial velocity 0 m/s. The rate of change is 9.8. That means the acceleration due to gravity is 9.8 m/s2.
Answer:
Step-by-step explanation:
We'll just work on solving both so you can see what's involved in solving an absolute value equation. Because an absolute value is a distance, we can have that distance being both to the right on the number line of the number in question or to the left. For example, from 2 on the number line, the numbers that are 5 units away are 7 and -3. Using that logic, we will simplify the equation down so we can set up the 2 basic equations needed to solve for x.
If
then
What you need to remember here is that you cannot distribute into a set of absolute values like you would a set of parenthesis. The -2 needs to be divided away:

Now we can set up the 2 main equations for this which are
.5x + 1.5 = .5 and .5x + 1.5 = -.5
Knowing that an absolute value will never equal a negative number (because absolute values are distances and distances will NEVER be negative), once we remove the absolute value signs we can in fact state that the expression on the left can be equal to a negative number on the right, like in the second equation above.
Solving the first one:
.5x = -1 so
x = -2
Solving the second one:
.5x = -2 so
x = -4
Answer: 999 games
Step-by-step explanation:
There are many ways to illustrate the rooted tree model to calculate the number of games that must be played until only one player is left who has not lost.
We could go about this manually. Though this would be somewhat tedious, I have done it and attached it to this answer. Note that when the number of players is odd, an extra game has to be played to ensure that all entrants at that round of the tournament have played at least one game at that round. Note that there is no limit on the number of games a player can play; the only condition is that a player is eliminated once the player loses.
The sum of the figures in the third column is 999.
We could also use the formula for rooted trees to calculate the number of games that would be played.

where i is the number of "internal nodes," which represents the number of games played for an "<em>m</em>-ary" tree, which is the number of players involved in each game and l is known as "the number of leaves," in this case, the number of players.
The number of players is 1000 and each game involves 2 players. Therefore, the number of games played, i, is given by
