Answer: 0.60
Step-by-step explanation:
30 total students
6 have Androids
6+2+4= 12 had services with AT&T
12+6=18
18/30
3/5 Simplify
0.60 when you divide 3 into 5
Step-by-step explanation:
Given precision is a standard deviation of s=1.8, n=12, target precision is a standard deviation of σ=1.2
The test hypothesis is
H_o:σ <=1.2
Ha:σ > 1.2
The test statistic is
chi square = 
=
=24.75
Given a=0.01, the critical value is chi square(with a=0.01, d_f=n-1=11)= 3.05 (check chi square table)
Since 24.75 > 3.05, we reject H_o.
So, we can conclude that her standard deviation is greater than the target.
Answer:
It’s 5625.00 don’t listen to this other one
Step-by-step explanation:
Answer:
a) ![[-0.134,0.034]](https://tex.z-dn.net/?f=%5B-0.134%2C0.034%5D)
b) We are uncertain
c) It will change significantly
Step-by-step explanation:
a) Since the variances are unknown, we use the t-test with 95% confidence interval, that is the significance level = 1-0.05 = 0.025.
Since we assume that the variances are equal, we use the pooled variance given as
,
where
.
The mean difference
.
The confidence interval is

![= -0.05\pm 1.995 \times 0.042 = -0.05 \pm 0.084 = [-0.134,0.034]](https://tex.z-dn.net/?f=%3D%20-0.05%5Cpm%201.995%20%5Ctimes%200.042%20%3D%20-0.05%20%5Cpm%200.084%20%3D%20%5B-0.134%2C0.034%5D)
b) With 95% confidence, we can say that it is possible that the gaskets from shift 2 are, on average, wider than the gaskets from shift 1, because the mean difference extends to the negative interval or that the gaskets from shift 1 are wider, because the confidence interval extends to the positive interval.
c) Increasing the sample sizes results in a smaller margin of error, which gives us a narrower confidence interval, thus giving us a good idea of what the true mean difference is.